ADDITIONAL I/O INFORMATION

The 170 initiation code is executed at priority O in system state.
This means that no context switch can occur, no completion routines
can run, and any traps to 4 and 10 cause a system fatal halt. All
registers are available to use in this section. At the end of the
section, control is returned to the monitor with an RTS PC. The
1/0 queue guarantees that transfers will be serialized. Because of
this, RT-11 device handlers are not re-entrant. To minimize their
size, they are not written as pure code and data segments.

48 000012 012727 MOV #RKCNT, (PC)+ ;SET ERROR RETRIES
00CC10

The MOV statement above sets the number of error retries to 8 and
moves that value to RETRY:. (The (PC)+ notation points to RETRY:.)
At this point, the handler knows that it has a brand new queue ele-
ment, and that a retry is not in progress.

49 000016 000000 RETRY: O ;HIGH ORDER BIT USED FOR
; RESET IN PROGRESS FLAG

If bit 15 of the word at RETRY: is 1 (that is, if the word is ne-
gative), then a retry is in progress.

50 000020 016705 MOV RKCQE, RS ;GET Q PARAMETER POINTER

RKCQE points to the block number Q.BLKN in the I/0 queue element.

177764
51 000024 011502 MOV @RS,R2 :R2 = BLOCK NUMBER
52 000026 016504 MOV 2(R5) ,R4 ;R4 = UNIT NUMBER
000102 [The controller requires
the unit number in the top
three bits of the word
loaded into RKDA.]
53 000032 006204 ASR R4 ; ISOLATE UNIT BITS IN
;HIGH 3 BITS
54 000034 006204 ASR R4
55 000036 006204 ASR R4
56 000040 000304 SWAB RY
57 000042 042704 BIC #7C<160000>, R4
017777
58 000046 O00040U BR 2% ;ENTER COMPUTATION LOOP

The device unit number and block number are known; the disk ad-
dress for a read or write request must be calculated. Once calcu-
lated, the disk address is stored in DISKAD in case it must be used

Figure C-10 RKOS5 Handler Listing(Cont.)

(@}
!

25

ADDITIONAL I/O INFORMATION

again during retries. The RK disk has 12 blocks per track, and two
tracks per cylinder. To find the disk address, the block number is
divided by 12, and the quotient and remainder are separated.

59
60 000050 060204 1$: ADD R2,RU ;ADC 16R TO ADDRESS
61 000052 006202 ASR R2 ‘R2 = 8R
62 000054 006202 ASR R2 ‘R2 = UR
63 000056 060302 ADD R3,R2 iR2 = UR+S = NEW N
64 000060 010203 23: MOV R2,R3 iR3 = N = 16R+S
65 000062 042703 BIC #177760,R3 iR3 = S
177760
66 000066 040302 BIC R3,R2 ‘R2 = 16R
67 000070 001367 BNE 1% ;LOOP IF R <> 0
68 000072 022703 CMP #12.,R3 IF S < 12,
000014
69 000076 003002 BGT 3% ;THEN F(S) = S
70 000100 062703 ADD #4,R3 jELSE F(S)=F(1245')=164S'=4+S
000004
71 000104 060304 3$: ADD R3,RY ;R4 NOW CONTAINS RK ADDRESS
72 000106 010467 MOV R4, DISKAD :SAVE DISK ADDRESS

The disk address is saved in DISKAD. The significance of the bits
in DISKAD, from high order to low order, is as follows: unit, cyl-
inder, track, sector. The next statement points RS to a queue ele-
ment, since perhaps this is a retry and RS is not already set up.

000016

73 000112 016705 AGAIN: MOV RKCQE, RS ;POINT RS TO Q ELEMENT
177672

T4 000116 012703 MOV #103,R3 ;ASSUME A WRITE
000103

The operation code for a write with interrupt enabled is 103. This
information is in the PDP-11 Peripherals Handbook.

75 000122 012704 MoV #RKDA , RU ;POINT TO DISK ADDRESS REG
177412
76 000126 012714 MOV (PC)+,6R4 ;PUT IN ADDRESS UNIT SELECT

In the statement above, (PC)+ refers to DISKAD:.
77 000130 000000 DISKAD: O ; SAVED COMPUTED DISK ADDRESS

The following statement adds 4 to R5, so that R5 points to Q.BUFF
in the queue element.

Figure C-10 RKO05 Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

78 000132 02:525 CMP (RS)+, (R5)+ :ADVANCE TO BUFFER ADDRESS
;IN Q ELEMENT

79 JIFT

80 MOV (R5)+,~-(RY4) ;PUT IN BUFFER ADDRESS

81 .IFF

82 000134 OCLTTT7 JSR PC,@$MPPTR ;CONVERT TO PHYSICAL ADDR

In the line above, $MPPTR is a pointer to the monitor routine
$MPPHY. See Section 1.4.4.5 of this manual for information on the
$MPPHY monitor routine. This routine is available for NPR device
handlers to use. It converts the virtual buffer address supplied
in the queue element into an 18-bit physical address that 1is re-
turned on the stack. Section 1.4.4.5 explains how to use the rou-
tine, and lists the calling conventions, required inputs, and the
outputs of the routine.

The monitor supplies the virtual address in two words: Q.PAR and
Q.BUFF. This form is used because it can be directly used by char-
acter-oriented (non-NPR) devices. NPR devices such as the RK must
convert this pair of words into an 18-bit physical address consist-
ing of a 16-bit low part and a two-bit extension part. The exten-
sion bits are in positions 4 and 5 for use with UNIBUS controllers.
The routine $MPPHY is called through the pointer $MPPTR to do this
address conversion. The extension bits must be ORed into the com-
mand word being built for RKCS (see statement number 93, below).

000370

g3 000140 012644 MOV (SPY+,~(RY) ;MOVE LO 16 BITS INTO PLACE
4 IFTF

The next statement moves the word count Q.WCNT from the queue ele-
ment into RKWC, the device word count register. (Note that Q.WCNT
is a word count.) If the device is character oriented, the word
count must be shifted left to change it to a byte count (the same
as multiplying it by 2). RT-11 can transfer up to 32767 words per
operation. However, it can never transfer an odd number of bytes.

85 000142 012544 MoV (R5)+,-(R4) ; PUT IN WORD COUNT
86 000144 001406 BEQ 7$;0 COUNT => SEEK
87 000146 100402 BMI 5% ;NEGATIVE => WRITE

The RK controller requires that all word counts be negative.

88 000150 005414 NEG eRy ;POSITIVE => READ.
;FIX FOR CONTROLLER

Figure C-10 RKOS5 Handler Listing (Cont.)

c-27

ADDITIONAL I/O INFORMATION

89 ; ADD #2,R3 ;START UP A READ

The statement above was replaced by the following statement as a
result of a source patch to the VO3B handler source file. The fol-
lowing statement converts a write operation code to a read opera-

tion code by adding 2 to it. The operation code 105 is for a read
operation with interrupt enabled.

90 000152 122323 CMPB (R3)+,(R3)+ ; CHANGE COMMAND CODE TO READ
91 000154 5%:
92 .IFF

The following operation is necessary for the creation of an 18-bit

physical address. The 2-bit extension must be ORed into the com-
mand word being built for RKCS.

93 000154 052603 BIS (SP)+,R3 ;SET IN HI ORDER ADDRESS BITS
94 JIFTF

The next statement starts the operation, whatever it is, by moving
the operation code to RKCS, the device control and status register.

95 000156 010344 6%: MOV R3,-(RY) ;START THE OPERATION

The next statement returns control to the monitor. The 1/0
transter continues concurrently.

96 000160 000207 RTSH PC ;AWAIT INTERRUPT

The next statement is reached if the operation is a seek. The op-
eration code for a seek with interrupt enabled is 111.

97 000162 012703 7$: v #111,R3 ;START UP A SEEK
00011
98 JIFF
99 000166 005016 SLR (-:P) ;NO HI ORDER MEMORY ADDRESS
; Ol SEFK
100 CIE
101 000170 COO771 R 5% ; AWAIT INTERRUPT
102

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

36000600 30 38 38 38 38 36 36 30 36 00 06 30 36 38 36 38 36 36 30 30 06 30 3636 30 30 08 38 38 00 00 30 36 3038 30 3% 3 98 06 98 06 3 3 3 3 3 36 36 3% 3 %

The handler Asynchronous Trap Entry Section begins here.

JE3036 0030 36 38 06 6 36 36 36 36 38 36 6 36 38 36 36 30 36 36 3 36 36 38 36 38 06 36 38 30 3 38 30 36 30 38 98 96 36 36 96 30 38 30 36 6 38 36 3 3 % 3 %

The following code is reached when an interrupt occurs.

103 ; ASYNCHRONOUS TRAP ENTRY POINT TABLE
104

105 .NLIST CND

106 000172 .DRAST RK,5

The .DRAST macro generates the following block of code (up to the
next .LIST CND directive):

.GLOBL $INPTR
000172 001207 RTS ®7

The abort entry point is the word preceding RKINT:. Since no abort

entry point was specified in the .DRAST macro, above, RTS PC was
generated.

Disks are always allowed to complete an I/0 transfer attempt.
Aborting them in the middle of an operation is not necessary, and
can possibly corrupt the disk. It is not practical to try to stop
a disk during an I/0 transfer. So, abort requests are ignored by
doing an RTS PC. (In contrast, see the corresponding section of
the PC handler in Section C.5 of this appendix. The PC handler has
an abort entry point because the paper tape reader or punch must be
stopped to abort an I/0 transfer.)

000174 CGCUST7T RKINT:: JSR %5,8$INPTR
0co34uL
000200 0C010(.WORD "C<5%*7040>"0340

107 .LIST CND
108

If the handler is for a system device, the bootstrap fills in vec-
tor 220 and the pointers to the fixed offsets in the Resident Moni-
tor. (The bootstrap also relocates the pointers, which are actual-
ly set up by defining the values at assembly time.) Otherwise, the
information is filled in when the handler is made resident by
.FETCH or LOAD.

At interrupt time, the new PC (RKINT:) and new PS (340) are used.
The handler calls the monitor through $INPTR in the handler to

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

$INTEN in the monitor. The monitor lowers priority from 7 to 5,
switches to system state, and calls the handler back.

109 ; INTERRUPT ENTRY POINT

The monitor calls the handler back at this point. Execution is at
priority 5 and is in system state. The hardware has now finished

the I/0 operation, and the handler must determine if the transfer
was successful or if there was an error.

110 000202 012705 MOV #RKER, R5 ;POINT TO FRROR STATUS
; REGISTER
177402
111 000206 012504 MOV (R5)+,RY ;SAVE ERRORS IN R4,

; POINT TO RKCS

The value of RETRY is negative if a drive reset was Jjust done.
(Bit 15 is the retry flag.)

112 000210 005767 TST RETRY ;WERE WE DOING A DRIVE RESET?
177602

113 000214 100013 BPL NORMAL ;NO-NOKMAL OPERATION

114 000216 005715 TST €R5 ; YES-ANY ERROR?

Bit 15 of RKCS is the error summary bit. If there was an error

during a drive reset, it is handled in the same way as an error
that occurred during an I/0 transfer.

115 000220 100411 BMI NORMAL ; YES-HANDLE NORMALLY
R5 points to RKCS, the device control and status register.

116 000222 032715 BIT #20000,8R5 ;RESET COMFLETE?
020000

The RK device interrupts twice during a drive reset. The first in-
terrupt should be ignored.

117 000226 001474 BEQ RTSPC ;NO-DISMISS INTERRUPT-RK11
;WILL INTERRUPT AGAIN
118 ;WHEN RESET COMPLETE

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

The .FORK macro causes the code that follows it to be executed at
priority O after all interrupts have been serviced, but before any
jobs or their completion routines execute. This avoids executing
lengthy code in the handler at high processor priority.

119 000230 .FORK RKFBLK ;DO RETRIES AT
;FORK LEVEL
000230 OCu577 JSR %5,0$FKPTR
0cC31e
000234 00C24L .WORD RKFBLK - . (PIC]
120 000236 10067 RKRETR: CLRB RETRY+1 ; YES-CLEAR RESET FLAG
177555
121 000242 00723 BR AGAIN ;AND RETRY OPERATION AT
;FORK LEVEL
122
123 000244 027527 NORMAL: CMP €Rs, #310 ;IS THIS FIRST OF TWO

; INTERRUPTS CAUSED BY SEEK?
00(:310

The RK device interrupts twice for a seek operation. The first in-

terrupt should be ignored by the handler. The seek is complete
after the second interrupt has occurred.

124 000250 001463 BEQ RTSPC ; YES-IGNORE IT.RK WILL
; INTERRUPT AGAIN
125 ;WHEN SEEK COMPLETE

The next statement is reached when I/0 is complete or when there is
an I/0 error. The sign bit (bit 15) of RKCS, the device control
and status register, is an error summary bit. If RKCS is negative,
there was an error in the I/0 transfer.

126 000252 005715 TST €Rrs ; ANY ERRORS?
127 000254 100067 BPL DONE ; NO-OPERATION COMPLETE

The errors are processed at fork level, priority 0.

128 000256 .FORK RKFBLK ;PROCESS ERRORS AT FORK LEVEL.
000256 OCU5TT JSR %5,03FKPTR
0C0264
000262 (C021¢€ .WORD RKFBLK - . [PIC]

Figure C-10 RKOS5 Handler Listing (Cont.)

Cc-31

The following block of code (up to the next

ADDITIONAL I/O INFORMATION

generated if the system supports error logging:

129

.IF NE ERL$G

.ENDC statement) is

Register 4 contains errors from RKER, the device error register.
Unrecoverable errors that do not indicate hardware faults are not
logged.

130 000264 032704

062340

131 000270 001031

132

BIT

BNE

#62340, RU

RKERR

The other types of errors are logged:

133
134
135
136
137
138
139

140
141

142

143
144
145
146
47
148

149
150

000272
000274
000300
000302
000306
000312
000314

000316
000320

000324

000330

000334

000340
000342
000346

000352

010705

062705
000214
010502
012703

177400
012704
000007
012325
005304
001375
012703

000007
062703

004000
016705
177454
116704

177456
005304

oouTT7
000172
012705
177402
012504

MOV
ADD
MOV
MoV
MOV
RKRREG: MOV
DEC

BNE
MOV

ADD

MOV

MOVB

DEC
JSR
MOV

MOV
.ENDC

Figure C-10

PC,R5
#RKRBUF - . ,RS
R5,R2
#RK$CSR, R3
#RKNREG, R4
(R3)+, (R5)+
R4

RKRREG
#RKNREG,R3

#RKRCNT, R3

RKCQE, RS

RETRY, RY

RY
PC,@$ELPTR
#RKER, RS
(R5)+,RY

;TEST FOR USER TYPE ERRORS

;DON'T LOG THEM
;SOFT ERROR.

;GET ADDRESS TO SAVE
;SAVE REGISTERS
[PIC]

;SAVE ADDRESS IN R2 FOR EL
;R3 = ADDRESS OF

;REGISTER TO READ

;R4 = # OF REGISTERS TO READ

;MOVE REGISTERS TO BUFFER
s TEST IF DONF

;NG
;R3 = # OF REGISTERS
;IN LOW BYTE

7R3 = TOTAL RETRY COUNT
; IN HIGH BYTH

; POINT R% AT 3RD WORD OF Q.

;SET R4=C IN HIGH BYTE
;FOR FCRE ID

;AND RETEY CCUNT IN LOW BYTE
;RETRY CCUNT VALUE AFTER

;IT IS DECREMENTED

;CALL ERROR | CGGER.

;RESET RE,R4 N RETURN.

RKO5 Handler Listing (Cont.)

C-32

ADDITIONAL I/O INFORMATION

The next section of code retries both soft (such as checksum) and
hard (hardware malfunction) errors. RS points to RKCS, the device
control and status register.

151 000354 012715 RKERR: MOV #1,8R5 ; YES-RESET CONTROL
029001

When the controller is ready, it sets bit 7 of the low byte of
RKCS.

152 000360 105715 3%: TSTB eR5 ;WAIT

153 000362 100376 BFL 3% [loop until ready]

154 000364 105367 DECB RETRY ;DECREASE RETRY COUNT
177426

155 000370 001414 BEQ HERROR ;NONE LEFT-HARD ERROR

156 000372 032704 BIT #110000,RY ; SEEK INCOMPLETE OR

;DRIVE ERROR?
11200C

Both seek incomplete and drive error require a drive reset before
the operation can be retried.

157 ; 100000=DRIVE ERROR
158 ; 010000=SEEK ERROR

Common errors for which the I/0 transfer operation should be re-
tried are checksum errors, data late errors, and timing errors.

159 000376 CC1717 BEQ RKRETR ;NO-RETRY OPERATION

The next statement is reached if there is a seek incomplete or
drive error condition. RKDA was cleared by the controller reset
above, but the disk address is saved in DISKAD. The operation code
for a drive reset with interrupt enabled is 115.

160 00040C 016737 MOV DISKAD,@#RKDA ;YES-RESELECT DRIVE
7752k
T4

161 000406 0°271% MOV #115,8R5 ;START A DRIVE RESET

000114

Figure C-10 RKO0S Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

The flag in RETRY is set here so that on the next pass the handler
will know that a drive reset, and not an I/0 transfer, was the last
operaton done.

162 000412 052767 BIS #100000,RETRY ;SET FLAG
100000

177376

The next statement returns control to the monitor to wait for the
drive reset or seek to finish.

163 000420 000207 RTSPC: RTS PC ;AWAIT INTERRUPT
164

The next statement is reached when there has been an I/0 error that
has been retried and could not be corrected.

165 000422 016705 HERROR: MOV RKCQE, RS ;GET POINTER TO Q ELEMENT
177362

The handler reports the error to the user program by setting bit 0
(the hard error bit) in the channel status word. RS points to

Q.BLKN; R5, decremented by 2, points to the address of the channel
status word.

166 000426 052755 BIS #1,6-(R5) ;GIVE OUR USER AN
;ERROR IN CHANNEL
000001
167 .IF NE ERL$G
168 000432 000411 BR RKEXIT ;HARD ERROR,BR TO EXIT.

169

The following section is reached after a successful transfer.
Successful transfers are logged at fork level, priority 0.

170 000434 DONE : .FORK RKFBLK ;CALL ERROR LOG AT FORK
;LEVEL FOR SUCCESS
000434 oous77 JSR %5,8$FKPTR
000106
000440 000040 -WORD RKFBLK - .
171 000442 012704 MOV #RKIDS,RY4 ;SUCCESSFUL 1/0,SET R4=0
;IN HIGH BYTE FOR RK,
000377

Figure C-10 RKO5 Handler Listing (Cont.)

172
173 000446

174 000452

175
176
177
178
179 000456

016705
177336
ocuT7T7
C00062

0C5067
177334

ADDITIONAL I/0 INFORMATION

MOV
JSR
.IFF
DONE :
.ENDC
RKEXIT: CLR

RKCQE, RS
PC,@$ELPTR

RETRY

(22222222222 2222222222222 sistliddsst sttt

The handler 1/0 Completion Section begins here.

IR ORI 08 000000 0000 00 00 00 0008 00 0030 08 0030 08 30 0038 08 00 00 38 00 00 38 08 3000 30 00 3 38 08 3 3¢

180
181 000462

.NLIST CND

.DRFIN RK

;=1 IN LOW BYTE FOR SUCESS.
;POINT RS AT 3RD WORD OF Q.

;CALL ERROR LOGGER.
;ON RETURN EXIT.
[If no error logging]

;CLEAR ANY FLAGS

;EXIT TO COMPLETION

The .DRFIN macro generates the next block of code (up to the next

.LIST CND directive).

This section lets the monitor know that the

1/0 operation is complete so that the queue element can be returned

to the free element list.
JMP statement.

Control returns to the monitor with the
The monitor alerts the program if it was waiting

for this transfer to finish, or it runs the program's completion
routine, if any.

000462
000464

000470

0004TU

182

183

184

185 000500
000502
000504
000506

0°0704
062704

177324
013705
000054
000175

000279

Q00009
200000
J0000)2
310009

.GLOBL RKCQE
MOV
ADD
MOV
JMP

.LIST CND

.ENDC

RKFBLK: .WORD

Figure C-10

47,34
#RKCQE-. , %4

647054, %5
€°0270(5)

0,0,0,0

[PIC]
[Point to address of CQE]

[Base of RMON]
[Fixed offset in RMON]

[Go to I/0 campletion code
in the monitor]

;FORK QUEUE BLOCK

RKO05 Handler Listing (Cont.)

C-35

ADDITIONAL I/0 INFORMATION

186 .IF NE ERL$G

187 000510 RKRBUF: .BLKW RKNREG ;ERROR LOG STORAGE
;FOR REGISTERS

188 .ENDC

189

3300060000 00 00 00036 30 38 380608 3090 30 36 008 36 38 98 38 0008 36 06 36 30 6 28 36 36 0808 06 06 3 3 3

The handler Termination Section begins here.

300608 3006 06 36 00 00 00 8 28 36 363606 08 90 30 90 06 6 38 38 38 36 08 98 36 06 36 96 36 6 38 98 38 08 0806 38 36 3

The .DREND macro generates the block of code up to the .LIST CND
directive.

190 .NLIST CND

191 000526 .DREND RK
000000 ...V2=0
000002 ...v2=...V2+2,

If the handler is for a system device, the bootstrap fills in the
following table of pointers. Otherwise, it is filled in when the
handler is made resident by .FETCH or by LOAD. The pointers are to
fixed offsets in the Resident Monitor. Same of the following po-
inters are optional, and their assembly depends on which system
conditionals are defined. See Section C.4 of this appendix for a
more detailed explanation of the .DREND macro.

000526 000000 $RLPTR:: .WORD O
000530 000000 $MPPTR:: .WORD O
000532 000000 $GTBYT:: .WORD O
000534 000000 $PTBYT:: .WORD O
000536 000000 $PTWRD:: .WORD O
000003 ...V2=...V2+1
000540 000000 $ELPTR:: .WORD O
000007 ...V2=...V2+4,
000542 000000 $TIMIT:: .WORD O
000544 000000 $INPTR:: .WORD O
000546 000000 $FKPTR:: .WORD O
.GLOBL RKSTRT
000550' RKEND == .
000060 .ASECT
000060 .=60
000060 000007 -WORD ...V2 [Summary of SYSGEN options]
000550 .CSECT [Return to unnamed .PSECT]
192 .LIST CND
193
194 000001 .END

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

The symbol table is generated at the end of the assembly listing.

SYMBOL TABLE

AGAIN 000112R Q.PAR = 000016 RKRBUF 000510R
DISKAD 000130R Q.UNIT= 000007 RKRCNT= 004000
DLSYS = 000000 (; Q.WCNT= 000012 RKRETR 000236R
DMSYS = 000000 G RETRY 000016R RKRREG 000312R
DONE 0004 34R RFSYS = 000000 G RKSTRT 00OOOORG
DPSYS = 000000 ; RKBA = 177410 RKSTS = 100000
DSSYS = 000000 G RKCNT = 000010 RKSYS 000006RG
DTSYS = 000000 (; RKCQE ~ 000010RG RKWC = 177406
DXSYS = 000000 ¢ RKCS = 177404 RK$CSR= 177400 G
DYSYS = 000000 (; RKDA = 177412 RK$VEC= 000220 G
ERL$G = 000001 RKDS = 177400 RTSPC OOO420R
HERROR 000422R RKDSIZ= 011300 TIM$IT= 000001
MMG$T = 000001 RKEND = 000550RG $ELPTR OO0S40RG
NORMAL 000244R RKER = 177402 $FKPTR O00546RG
Q.BLKN= 000004 RKERR 000354R $GTBYT 000532RG
Q.BUFF= 000010 RKEXIT O0OO456R $INPTR OOOS44RG
Q.COMP= 000014 RKFBLK 000500R $MPPTR 000530RG
0.CSW = 000002 RKIDEN= 000000 $PTBYT 0O0053URG
G.ELGH= 000024 RKIDS = 000377 $PTWRD 000536RG
Q.FUNC= 000006 RKINT 0001T4RG $RLPTR 000526RG
Q. JNUM= 000007 RKLQE 0O00006RG $TIMIT O005u42RG
Q.LINK= 000000 RKNREG= 000007 ...V2 = 000007

. ABS. 000062 000

000550 001
ERRORS DETECTED: 0

VIRTUAL MEMORY USED: 1248 WORDS (5 PAGES)

DYNAMIC MEMORY AVAILABLE FOR 71 PAGES
y RK.LST/L:ME:MEB: TTM=RKCND.MAC, RK.MAC

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

C.4 System Device Handlers

The monitor and device handlers reside on the system device. The
device must be block-replaceable (random access), and have
read/write capability. Writing a device handler for a system
device requires very 1little extra work once the basic device
handler is written. (The RK handler in Section C.3 1is a good
example of a random access device handler.) The programmer simply
defines the symbol $SYSDV. The system macros then expand properly,
generating all the required code for a system device handler.

C.4.1 Assembling A System Device Handler

The following list shows the steps required to assemble a device
handler as a system device handler.

1. The file SYCND.MAC must be edited to set the symbol $xxSYS to
1. For the RK handler, for example, the statement is as
follows:

SRKSYS =1

2. The file SYSDEV.MAC must be included in the assembly. This
file contains the single line:

$SYSDV = 1

3. The handler, called MYFILE in this example, should be
assembled together with the three system files, as shown:

MACRO/LIST Xx+SYCND+SYSDEV+MYFILE/OBJECT
In the line above, xx represents SJ, FB, or XM. The correct
macro source file for the corresponding monitor should be
used. The resulting object file is MYFILE.ORJ.

(To assemble a handler as a data device only, the SYSDEV file
should be omitted.)

ADDITIONAL I/O INFORMATION

C.4.2 System Device Handler Requirements

The following list outlines the special requirements for a system
device handler. These requirements are filled automatically by the
system macros .DRBEG, .DRAST, .DRFIN, and .DREND.

l. Entry points of all current system devices (except for this
handler) must be referenced in a global statement, and all
must be equated to 0.

2. The handler size must be global, and must be called $SYHSZ.

3. The handler entry point must be tagged xxSYS (xx represents
the device name). It must also be global. The xxSYS label
is provided by the .DRBEG macro.

4. The handler must be a .PSECT named SYSHND. This .PSECT is
defined by the .DRBEG macro.

5. The handler must terminate with a table of pointers to
monitor routines. These global routine names are resolved
when the handler is linked to the monitor, instead of being
filled in by the fetch code at load time. The conditionals
that are defined for the handler must match the conditionals
defined for the monitor. The .DREND macro provides the table
of pointers.

C.4.3 The .DRBEG and .DREND Macros

Figure C-11 shows the .DRBEG and .DREND macros. Appendix B of this
manual provides complete listings of all the system macros. In Figure
C-11, black ink is used for text and comments. Red ink is used for
the actual source listing of the macro files.

ADDITIONAL I/0 INFORMATION

-MACRO .DRBEG NAME,VEC,DSIZ,DSTS,VTBL

.IF NDF $SYSDV If the handler is not for a System device, the lines
up to the .IFF statement are assembled.
.ASECT
. =52
.GLOBL NAME'END This is global so that the handler can be broken
into two separately assembled modules.
(The RT-11 magtape handler is an example.)
-DRBEG can be put in the first module, and
-DREND can be put in the last module.
.WORD <NAME'END - NAME'STRT>
.WORD DSIZ
.WORD DSTS
.CSECT
IFF If the handler is for a system device, the next two
lines are assembled.
$SYDSZ == DSIZ This is global because it gets linked into the USR
for use by the .DSTATUS request.
.PSECT SYSHND The .PSECT is named SYSHND for the system handler.
.ENDC
NAME'STRT: :
.IF B VIBL
.GLOBL NAME'INT This is for a device with a single vector.
.WORD VEC
.WORD NAME'INT - .
.IFF

-GLOBL VTBL,NAME'INT This is for a device with more than one vector.

.WORD <VTBL-.>/2. -1 + “0100000
.WORD NAME'INT - .

.ENDC
.WORD ~0340
NAME'SYS:: This is used only by a system handler.
NAME'LQE:: WORD O
NAME'CQE: : .WORD O
.ENDM

.MACRO .DREND NAME

... V2=0 This bit mask is an accumulation of SYSGEN options.
As each option is defined, a bit is added to this
word.

.IF NE MMGST (For XM handler)

el V2=, . 0V242

Figure C-11 The .DRBEG and .DREND Macros

C-40

ADDITIONAL I/0 INFORMATION

.IF DF $SYSDV

.GLOBL $RELOC, $MPPHY, $GETBYT, $PUTBYT, $PUTWRD

$RLPTR:: .WORD $RELOC These pointers are for use in XM only. The system

$MPPTR:: .WORD $MPPHY handler must have this table with these names.

$GTBYT:: .WORD $GETBYT The boot relocates the pointers appropriately.

$PTBYT:: .WORD $PUTBYT

$PTWRD:: .WORD $PUTWRD

IFF

$RLPTR:: .WORD Handlers for nonsystem devices do not need names

$MPPTR:: .WORD) in this table because the .FETCH code sets them

$GTBYT:: .WORD) up when the handler is made resident.

$PTBYT:: .WORD 9

$PTWRD:: .WORD)

.ENDC

.ENDC (End of XM conditional)

.IF NE ERL$G

eo V2., .V24+]

.IF DF $SYSDV

.GLOBL $ERLOG

$ELPTR:: .WORD 3$ERLOG Pointer for error logging for system devices.

JIFF

$ELPTR:: .WORD) Pointer for error logging for nonsystem devices.

.ENDC

.ENDC

JIF NE TIM$IT

e V22...V244

.IF DF $SYSDV

.GLOBL $TIMIO

$TIMIT:: .WORD 3$TIMIC Pointer for time-out support for system devices.

.IFF

$TIMIT:: .WORD) Pointer for time-out support for nonsystem devices.

.ENDC

.ENDC

.IF DF $SYSDV

.GLOBL $FORK,$INTEN

$INPTR: .WORD $INTEN Pointers for system devices.

$FKPTR:: .WORD $FORK

IFF

$INPTR:: .WORD Pointers for nonsystem devices.

$FKPTR:: .WORD)

IFTF

.GLOBL NAME'STRT These globals allow the handler to be broken into
modules .

NAME'END == .

JIFT

$SYHSZ == NAME'tND - MAME'STRT This must be in all system handlers.

It defines the size of the handler in bytes.

Figure C-11 The .DRBEG and .DREND Macros (Cont.)

C-41

. IFF
.ASECT
.=60
.WORD

.CSECT
.ENDC
.ENDM

... V2

ADDITIONAL I/0 INPORMATION

This is the SYSGEN options word. It is placed in
location 60 in block O of the handler. It must
match the SYSGEN fixed offset in RMON. It is used
for nonsystem handlers only.

Figure C-11 The .DBREG and .DREND Macros (Cont.)

C.5 Study of the PC Handler

Figure C-12 provides detailed comments
The comments

the PC

illustrates
(non-NPR) device with two vectors.

paper tape reader alone as well as for the
and punch devices.

do

handler,
handler

combined paper tape

In Figure C-12, black ink is used for text and comments. Red
used for the actual device handler assembly listing.

on a listing of the PC handler.
not duplicate those in the RK handler example;
comments are provided only for those features that are different

such as multi-vectored format. Figure
techniques for a serial, character-oriented
The PC handler can be used for the

ADDITIONAL I/O INPORMATION

PC V03.01 MAC3) VO3.02B12-SEP-78 15:29:52 PAGE 1

1 ;CONDITIONAL FILE FOR PC HANDLER EXAMPLE

2 ;

3 :PCCND.MAC

4 ;

5 :19/1/78 JAD

6 ;

7 s ASSEMBLE WITH PC.MAC TO TURN ON 18-BIT I/0,

8 : TIME-OUT SUPPORT, AND ERROR LOGGING FOR

9 ;PC HANDLER

10 H

1 000001 MMG$T = 1 ;TURN ON 18-BIT 1/0
12 000021 ERL$G =1 ;TURN ON ERROR LOGGING
13 000031 TIM$IT = 1 ;TURN ON TIME-OUT SUPPORT

PC V03.01 MACK) V03.02B12-SEP-78 15:29:52 PAGE 2

1 L.TITLE PC VO03.01

2 .IDENT /V03.01/

3 ; RT-11 HIGH SPEED PAPER TAPE PUNCH AND READER (PC11) HANDLER
4 ;

5 ; COPYRIGHT (C) 1978

6 .

7 ; DIGITAL EQUIPMENT CORPORATION

8 ; MAYNARD, MASSACHUSETTS 01754

9 ;

10 ; THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY
1 ; ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH
12 ; THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS

13 ; SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE

1y ; PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER

15 ; PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO

16 ; AGREES TO THESE LICENSE TERMS. TITLE TO AND OWNERSHIP
17 ; OF THE SOFTWARE SHALL AT ALL TIMES REMAIN IN DEC.

18 ;

19 ; THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO

20 ; CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED

21 ; AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

22 ;

23 ; DEC ASSUMES NO RESPONSIBILITY FOR THE USE

24 ; OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT

25 ; WHICH IS NOT SUPPLIED BY DEC.

Figure C-12 PC Handler Listing

C-43

PC

V03.01

ADDITIONAL I/O INFORMATION

MACRO VO03.02B12-SEP-78 15:29:52 PAGE 3

3030000606000 06 06 9896 3036 30 3630 30 90 90 30 00 00 9 36 ov 08 06 0008 06 38 3608 3805 00 48 30 30 00 00 00 08 00 30 9

The device handler Preamble Section starts here.

BR300 3600 00 0000 0 0036 3636383006 00 00 00 0 30 38 38 38 30 00 08 06 00 06 6 36 30 06 30 3090 06 00 08 06 00 38 08 30 3

10

000000

000000
000002
000004
000006
000007
000007
000010
000012
000014
000016
000024

.MCALL -DRBEG, .FORK, . DREND, . DRAST, . DRFIN, .QELDF
.IIF NDF PR11$X, PR11$X=0 (0O=punch and reader;
1=reader only]

.IIF NDF MMGT, MMGT=0

.IIF NDF ERLG, ERLG=0

.IIF NDF TIMIT, TIMIT=0

.NLIST CND
.QELDF
Q.LINK=0
Q.CSwW=2.
Q.BLKN=4.
Q.FUNC=6.
Q.JNUM=T.
Q.UNIT=7.
Q.BUFF="010
Q.WCNT="012
Q.COMP="014
Q.PAR="016
Q.ELGH="024
.LIST CND

The following three 1lines are commonly used offsets in the queue
element:

n
12
13
14
15
16
17

18
19
20

21
22
23
24

177776
000006
000004

000074

177556
000000

000007

CSTAT = Q.CSW-Q.BLKN
BYTCNT = Q.WCNT-Q.BLKN
BUFF = Q.BUFF—Q.BLKN
; PAPER TAPE PUNCH CONTROL REGISTERS
.IIF NDF PCVEC, PPVEC == 74 ;PUNCH VEZTOR ADDR
.IIF NDF PPCSR, PPCSR == 177554 ;PUNCH CONTRCL
; REGISTER
PPB = PP$CSR+2 ;PUNCH DATA BJFFER
PRDSIZ =0 ;PP DEVICE SIZE () => NON-
;FILE STRUCTUREL)
.IF EQ PR11$X
PRSTS =7 ;PP~PR DEVICE STATUS WORD
.IFF
PRSTS = 40007 ;READER ONLV

Figure C-12 PC Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

25 .ENDC
26
27 ; PAPER TAPE READER CONTROL REGISTERS
28 .IIF NDF PRCSR, PRCSR == 177550 ;CONTROL REGISTER
29 177552 PRB == PR$CSR+2 ;DATA REGISTER
30 .1IF NDF PRVEC, PRVEC == 70 :READER VECTOR ADDR
31
32 0000C1 PRGU = 1 ;READER ENABLE BIT
33 0001CT PINT = 101 ; INTERRUPT ENABLE BIT
;AND GO BIT
34
35 ; CONSTANTS FOR MONITOR COMMUNICATION
36 00000! HLERR = 1 ;HARD ERROR BIT [for CSW)
37 0200CC ECF = 20000 ;END OF FILE BIT [for CSW]

SRR 00000 0000 300000 00 0038 00 06 00 00 30 08 00 00 00 00 06 06 3030 08 909030 38 96 00 00 38 0 0000 08

The device handler Header Section begins here.

TR0 00 0000 30 3000 00 00 30 0 00 00 00 00 06 00 06 30 30 0 06 08 30 08 6 06 38 30 38 96 00 08 30 00 06 08 18

1 ; LOAD POINT

2

3 .IF EQ PR11$X [If both reader and punch:]
y .NLIST CND

5 000000 .DRBEG PR,PR$VEC,PRDSIZ,PRSTS,PRTAB

PRTAB in the line above is the vector table.

000000 .RSECT

00005: . = 52

.GLOBL PREND

000052 00033% .WORD <PREND - PRSTRT>
000054 000000 .WORD PRDSIZ
000056 000007 .WORD PRSTS
000000 .CSECT
000000 PRSTRT:

This references the

.GLOBL PRTAB, PRINT

table for a multi-vectored device:

000000 10003. .WORD <PRTAB-.>/2. -1 + “0100000
000002 000160 .WORD PRINT - .

000004 000340 .WORD "0340

000006 PISYS::

000006 00000L PRLJE:: .WORD O

000010 000000 PRCQE:: .WORD O

Figure C-12 PC Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

6 .LIST CND

7 IFF (If reader only:]
8 .NLIST CND

9 .DRBEG PR,PR$VEC,PRDSIZ,PRSTS

10 .LIST CND

1" .ENDC

ﬁ&*ilﬁ&&l!l.l*i.l..’C.l&il.li!&l'.lll’.l.."l..il’.“.’

The device handler I/0 Initiation Section begins here.

Q*!ﬁ*""!Gi.‘ﬁ!l’!l!l.l!!!'ll.Q.Q.ll..ll.’l!!.!.!.lll

13 ; ENTRY POINT

}g 000012 016704 PP: MOV PRCQE, R4 ;R4 POINTS TO CJRRENT Q ENTRY
16 000016 8323%5 ASL BYTCNT(RY) ;WORD COUNT TC 3YTE COUNT

17 000022 ?8288? BCC PR ;BRANCH => READ

The routine for the punch:

18 .IF EQ PR11$X [Both reader and punch:]
19 000024 012767 MOV ##PP$CSR, PRCSR ;SAVE CSR FOR ABORT.
177554
000256
20 000032 052737 BIS #100,8#PP$CSR ;CAUSES INTERRUPT,
;STARTING TRANSFER
000100
177554
g; 000040 000207 . RTS PC [Reader only:]
23 BR PPERR ;NO PUNCH, ERROR .
24 .ENDC

25

The routine for the reader:

26 000042 001505 PR: BEQ PRDONE ;A REQUEST FOR O BYTES IS
;A SEEK, EXIT.

Even though a seek is not a reasonable operation for paper tape, the
handler provides for it as part of RT-11's device independence.

Figure C-12 PC Handler Listing (Cont.)

C-46

ADDITIONAL I/O INFORMATION

27 000044 (01277 MOV #PR$CSR,PRCSR ;SAVE CSR FOR ABORT.
17755C
0002-¢€

28 000052 0057-7 TST @#PR$CSR ;IS READER READY?
17755C

29 000056 1000¢.C BPL PRGORD ;YES, START TRANSFER

30 000060 05274 BIS #EOF ,8- (RU) ; IMMEDIATE EOF IF NOT READY
020000

31 000064 00044 BR PRDONE ;SET EOF BIT,

;COMPLETE OPERATION

32

33 , PUNCH-READER VECTOR TABLE

34

35 000066 PRTAB:

36 -IF EQ PR11$X

37 000066 0000,C .WORD PR$VEC ;READER VECTOR

38 000070 000072 .WORD PRINT-. ;READER ISR OFFSET

39 000072 000340 .WORD 340 ; STATUS

40 000074 000074 .WORD PP$VEC ;PUNCH VECTOR

471 000076 0000°C .WORD PPINT-. ;PUNCH ISR OFFSET

42 000100 00034C .WORD 340 ; STATUS

43 000102 0000(C .WORD 0 ;END OF TABLE

4y .ENDC

45

TN 000000 00 00 0 000030 00 300000 00 00 00 00 0 0038 3030 3030 06 00 00 00 0 18 36 00 38 08 00 00 00 00 06 0 08 36 36 36 38 36 36 0000 08 00 00 06 3

The device handler Asynchronous Trap Entry Section begins here.

BRI 0000 0000 0000000003000 3000 00 00 00 00 00 00 00 3030 3030 30 00 06 8 00 00 90 00 00 3008 00 30 00 06 00 48 36 36 36 38 36 38 38 08 08 36 30 3¢ 3

46 . 2UNCH INTERRUPT SERVICE
u7

u8 -IF EQ PR11$X

49 -NLIST CND

50 000104 .DRAST PP,4,PRDONE

PRDONE is the abort entry point. An abort can be requested by any of
the following means: typing double CIRL/C, issuing the .HRESET pro-
grammed request, any type of I/0 error, traps to 4 and 10, and any other
condition that causes a MON-F- type of fatal error message to appear.
In the event that an abort is requested, is necessary to stop the de-
vice. This is not necessary for a disk, but it is important for a char-

acter-oriented device like paper tape, in order to prevent a tape runa-
way condition.

.GLOBL $INPTR
000104 (0OOu+u4 BR PRDONE

Figure C-12 PC Handler Listing (Cont.)

C-47

ADDITIONAL I/O INFORMATION

000106 004577 PPINT:: JSR %5,6$INPTR

000216
000112 000140 .WORD “C<u4#*"0u0>"03u0
51 .LIST CND
52 000114 016704 MOV PRCQE, R4 ;R4 POINTS T) CURRENT Q ENTRY
177670
53 000120 005737 TST €#PP$CSR ;ERROR?

Bit 15 in PP$CSR is the error bit. The possible errors for paper tape
devices are device out of tape, and tape jammed.

177554
54 000124 100412 BMI PPERR ;YES-PUNCH OUT OF PAPER
55 000126 005764 TST BYTCNT (R4) ;ANY MORE CHARS TO OUTPUT?

The transfer is done if the required number of bytes 1is transferred
without error.

000006

56 000132 001451 BEQ PRDONE ;NO-TRANSFER DONE

57 000134 005264 INC BYTCNT (R4) ; DECREMENT BYTE COUNT

; (IT IS NEGATIVE)

000006

58 .IF EQ MMG$T

59 MOVB €BUFF(RY4) ,6#PPB ;PUNCH CHARACTER

60 INC BUFF(R4) ;BUMP POINTER

61 IFF

$GTBYT is a pointer to the monitor $GETBYT routine. See Section 1.4.4.5
of this manual for a description of the routine.

62 000140 004777 JSR PC,8$GTBYT ;GET A BYTE FROM USER BUFFER
000152

63 000144 112637 MOVB (SP)+,6#PPB ;PUNCH IT
177556

64 .ENDC

65 000150 000207 RTS PC

66 .ENDC

67

Character-oriented devices should check for disabling conditions, such
as no power -on device or no tape in reader or punch, and set the hard
error bit (bit 0) in the channel status word.

Figure C-12 PC Handler Listing (Cont.)

C-48

ADDITIONAL I/O INFORMATION

68 000152 052754 PPERR: BIS #HDERR,€-(R4) ;SET HARD ERROR BIT

000001
69 000156 0004:7 BR PRDONE ;GO TO I/0 COMPLETION
70
T ; READER INTERRUPT SERVICE
72
73 .NLIST CND
T4 000160 .DRAST PR, 4, PRDONE ;DEFINE AST ENTRY POINTS
.GLOBL $INPTR
000160 000436 BR PRDONE
000162 004577 PRINT:: JSR %5,0$INPTR
000142
000166 00014) .WORD “C<4#*°040>"0340
75 .LIST CND
76 000170 016704 MoV PRCQE, R4 ;R4 POINTS TO Q ENTRY
177614
77 -IF EQ MMGS$T
78 ADD #BUFF, RU ; POINT R4 TO BUFFER ADDRESS
79 .ENDC
80 000174 0057:7 TST 6#tPR$CSR ;ANY ERRORS?
177559
81 000200 100413 BMI PREOF ; YES-TREAT AS EOF
82 .IF EQ MMG$T
83 MOVB €#PRB,8(RY4) ; PUT CHAR IN BUFFER
8u INC (RU)+ ;BUMP BUFFER POINTER
85 DEC @Ry ; DECREASE BYTE COUNT
86 JIFF
87 000202 11374> MOVB €i#tPRB,~(SP) ;GET A CHARACTER
177552
88 000206 004777 JSR PC,8$PTBYT ;MOVE IT TO USERS BUFFER
000105
89 000212 005364 DEC BYTCNT (R4) ;DECREASE BYTE COUNT
000005
90 .ENDC '
91 000216 001417 BEQ PRDONE ;IF ZERO,WE ARE DONE

92 000220 052737 PRGORD: BIS #PINT,€#PR$CSR ;ENABLE READER INTERRUPT,

;GET A CHARACTER
0001G 1

177559
93 000226 000207 RTS PC
94

Stop the device if there are errors or if the end of tape is reached:

95 000230 005C:/ FREOF: CLR @#PR$CSR ;DISABLE INTERRUPTS
1775%0
96 000234 .FORK PRFBLK ;REQUEST SYSTEM PROCESS
000234 004s77 JSR %5,8$FKPTR
000C72
000240 000Cu? .WORD PRFBLK - .
97 LIF EQ MMGST

Figure C-12 PC Handler Listing (Cont.)

C-49

ADDITIONAL I/O INFORMATION

For character-oriented devices, it is necessary to clear the remainder
of the user's buffer when end of file is reached (if CTRL/Z is typed on
the console terminal, if there is no tape in the reader, etc.). The
handler sets the EOF bit in the channel status word the next time the
handler is called to do a transfer. This convention makes
character-oriented devices appear the same as random access devices, and
is in keeping with the RT-11 device independence philosophy.

98 PREO1: CLRB €(RY) ;CLEAR REMAINDER OF BUFFER

99 INC (R4) ;BUMP BUFFER ADDRESS.

100 DEC BYTCNT-BUFF(R4) ;TEST IF DONE.

101 BNE PREO1 ;BRANCH IF MORE.

102 .IFF

103 000242 005046 PREO1: CLR -(spP)

104 000244 o0uT777 JSR PC,8$PTBYT ;CLEAR A BYT: IN USER BUFFER
000050

105 000250 005364 DEC BYTCNT (R4) ; DECREMENT BYTE COUNT
000006

106 000254 001372 BNE PREO1 ;BR IF MORE

107 .ENDC

108

109 ; OPERATION COMPLETE

If the operation is complete or if it cannot camplete because of an
error, it is necessary to turn off the device:

110 000256 005077 PRDONE: CLR 6PRCSR ;TURN OFF THE READER/PUNCH
; INTERRUPT
000026
m ;IN CASE WE GET AN ERROR LATER
112 .NLIST CND

FN AN 0 IR0 0000 000 M NN

The handler I/0 Completion Section begins here.

TR0 0000000000 3000 00 00 0000 0000 00 00 00 000000 3000 0000 0 00 0006 06 06 30 3008 38 38 35 36 00 00 08 8 ¢

113 000262 PRFIN: .DRFIN PR ;GO TO I,0 COMPLETION
.GLOBL PRCQE
000262 010704 MoV 57,%4
000264 062704 ADD #fPRCQE-. , B4
177524
000270 013705 MoV 6#t"05u, %5
000054
006274 000175 JMP €°0270(5)
000270

Figure C-12 PC Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

114 .LIST CND

115

116

117 000300 000000 PRFBLK: .WORD 0,0,0,0 ; FORK QUEUE BLOCK

000302 000000
000304 000000
000306 000000

118 000310 00CO00 PRCSR: .WORD O ; ADDRESS OF DEVICE TO STOP.
119
120 .NLIST CND

FHIETH 000000 30 00 00 00 30 00 6 30 36 00 36 38 00 36 36 08 0005 30 0030 08 30 30 38 08 90 30 08 06 00 9 38 06 338 9 %

The handler Termination Section begins here.
T30 0000 0000000000000 06 36 00 15 3000 00 300000 00 00 0000 8 00 00 0 3000 8 0000 6 3000 6 30 008
121 000312 .DREND PR

000000 ...V2=0
000002 ...V2=...V2+42.

000312 000000 $RLPTR:: .WORD O
000314 000000 $MPPTR:: .WORD O
000316 000000 $GTBYT:: .WORD 0
000320 000000 $PTBYT:: .WORD O
000322 000000 $PTWRD:: .WORD O
000003 ...Ve=...V2+1
000324 000000 $ELPTR:: .WORD O
000007 ...V2=...V2+4.
000326 000000 $TIMIT:: .WORD O
000330 000000 $INPTR:: .WORD O
000332 000000 $FKPTR:: .WORD O
.GLOBL PRSTRT
000334' PREND == .
000060 .ASECT
00V060 .=60
000060 000007 .WORD ...V2
000334 .CSECT
122 .LIST CND
123
124 000001 .END

Figure C-12 PC Handler Listing (Cont.)

ADDITIONAL I/O INPORMATION

SYMBOL TABLE

BUFF = 000004 PREND = 000334RG Q.CSW = 000002
BYTCNT= 000006 PRECGF 000230R Q.ELGH= 000024
CSTAT = 177776 PREO1 000242R Q.FUNC= 000006
EOF = 020000 PRFBLK 000300R Q.JNUM= 000007
ERL$G = 000001 PRFIN 000262R Q.LINK= 000000
HDERR = 000001 PRGO = 000001 Q.PAR = 000016
MMG$T = 000001 PRGORD 000220R Q.UNIT= 000007
PINT = 000101 PRINT 000162RG Q.WCNT= 000012
PP 000012R PRLQE 000006RG TIM$IT= 000001
PPB = 177556 PRSTRT 0000OORG $ELPTR 000324RG
PPERR 000152R PRSTS = 000007 $FKPTR 000332RG
PPINT 000106RG PRSYS 000006RG $GTBYT 000316RG
PP$CSR= 177554 G PRTAB 000066RG $INPTR 000330RG
PP$VEC= 000074 G PR$CSR= 177550 G $MPPTR 000314RG
PR 000042R PR$VEC= 000070 G $PTBYT 000320RG
PRB = 177552 G PR11$X= 000000 $PTWRD 000322RG
PRCQE ~ 000010RG Q.BLKN= 000004 $RLPTR 000312RG
PRCSR 000310R Q.BUFF= 000010 $TIMIT 000326RG
PRDONE 000256R Q.COMP= 000014 ...V2 = 000007

PRDSIZ= 000000

. ABS. 000062 000
000334 001
ERRORS DETECTED: O

VIRTUAL MEMORY USED: 1276 WORDS (5 PAGES)
DYNAMIC MEMORY AVAILABLE FOR 71 PAGES
, PC.LST/L:ME:MEB: TTM=PCCND.MAC, PC .MAC

Figure C-12 PC Handler Listing (Cont.)

C.6 RT-11 File Formats

C.6.1 Object File Format (OBJ)

An object module is a file containing a program or routine in a
binary, relocatable form. Object files normally have an .OBJ file
type. In a MACRO program, one module is defined as the unit of code
enclosed by the .TITLE and .END pair of MACRO directives. The module
name is taken from the .TITLE statement. Object modules are produced
by language processors, such as MACRO and FORTRAN, and are processed
by the linker to become runnable programs (in SAV, LDA, or REL format,
discussed later). Object files can also be processed by the librarian
to produce library OBJ files, which are then used by the linker.

Many different object modules can be combined to form one file. Each
object module remains complete and independent. However, object
modules combined into a library by the 1librarian are no longer
independent. They are concatenated and become part of the library's
structure. The modules are concatenated by byte rather than by word
in order to save space. For example, suppose a library is to consist
of two modules and the first module contains an odd number of bytes.
The second module is added to the library behind the first module.
The first byte of the second module is positioned as the high order
byte of the last word of the first module. The result of this
procedure is that one byte is saved in the library.

To understand byte concatenation, it is most helpful to think of the
modules as a stream of bytes, rather than as a stream of 2-byte words.
Figure C-13 shows how two 5-byte modules would be concatenated.
Module 1 and module 2 are shown both as bytes and as words.

C-52

ADDITIONAL I/O INFORMATION

Bytes: Words:
Module 1:
1 2 1
2 4 3
3 5
4
5
Module 2:
1 2 1
2 4 3
3 5
4
5

Concatenated modules, Module 1 followed by Module 2:

Bytes: Words:

Module 1: 1 Module 1: 2 1

2 4 3

3 Module 2: 1 5

4 3 2

5 5 4
Module 2: 1

2

3

4

5

Figure C-13 Modules Concatenated by Byte

ADDITIONAL I/O INFORMATION

If RT-11 is to begin execution of a program within a particular object
module of a program, the information on where to start is given as the
transfer address. The first even transfer address encountered by the
linker is passed to RT-11 as the program's start address. Whenever
the resulting program is executed the start address 1is used to
indicate the first executable instruction. If no transfer address is
given (if, for example, none is specified with the .END directive in a

MACRO program) or if all are odd, the resulting program does not
self-start when run.

Object modules are made up of formatted binary blocks. A formatted
binary block is a sequence of 8-bit bytes (stored in an RT-11 file, on

paper tape, or by some other means) and is arranged as shown in Figure
Cc-14.

Byte containing octal value 1

Byte containing octal value 0

Low order byte of length

High order byte of length

Data bytes

Checksum byte

Figure C-14 Formatted Binary Format

Each formatted binary block has its length stored within it. The
length includes all bytes of the block except the checksum byte. The
data portion of each formatted binary block contains the actual object
module information. The checksum byte is the negative of the sum of
all preceding bytes. Formatted binary blocks may be separated by a
variable number of null (0) bytes.

If the first two bytes of a formatted binary block (the 1 and 0 bytes)
are discarded, and if the checksum byte is discarded, the remainder of
the block is compatible with RSX-11M formatted binary blocks. The
length bytes indicate the 1length of the RSX binary block. RT-11
formatted binary blocks are a proper subset of the RSX binary blocks.
See Appendix B, "Task Builder Data Formats", in the RSX-11M Task
Builder Reference Manual, order number AA-2588D-TC, for detailed
information on the many types of formatted binary blocks.

C.6.2 Library File Pormat (OBJ and MAC)

A library file contains concatenated modules and some additional
information. RT-11 supports both object and macro libraries. Object
libraries usually have an .OBJ file type; macro libraries wusually
have a .MAC file type. The modules in a library file are preceded by
a Library Header Block and Library Directory, and are followed by the
Library End Block, or trailer. Figure C-15 shows the format of a
library file.

ADDITIONAL I/O INFORMATION

Library Header

Directory

]
Concatenated modules :
(starts on a block boundary):

Library End Trailer Block

Figure C-15 Library File Format

Diagrams of each component in the library file structure are included

here. See Chapter 12 of the RT-11 System User's Guide for information
on using the librarian.

C.6.2.1 Library Header Format - The library header describes the
status of the file. There is a different header for object libraries
and for macro libraries. The contents of the object 1library header

are shown in Figure C-16. The contents of the macro library header
are shown in Figure C-17.

All numeric values shown are octal. The date and time, which are in
standard RT-11 format, are the date and time the library was created.
This information is displayed when the library is listed.

Offset Contents Description
0 1 Library header block code
2 : 42
4 7 Librarian code
6 305 Library version number
10 0 Reserved
12 Date in RT-11 format (0 if none)
14 Time expressed in two words
16
20 0 Reserved
22 (0 Reserved
24 0 Reserved
26 10 Directory relative start address
30 Number of bytes in directory
32 0 Reserved
34 Next insert relative block number
36 Next byte within block
40 Directory starts here

Figure C-16 Object Library Header Format

C-55

ADDITIONAL I/O INFORMATION

Offset Contents Description
0 1001 Library type and ID code
2 305 Library version number
4 0 Reserved
6 Date in RT-11 format (0 if none)
10 Time expressed in two words
12
14 0 Reserved
16 0 Reserved
20 0 Reserved
22 0 Reserved
24 0 Reserved
26 0 Reserved
30 0 Reserved
32 10 Size of directory entries
34 Directory starting relative block number
36 Number of directory entries allocated
(default is 200)
40 Number of directory entries available

Figure C-17 Macro Library Header Format

C.6.2.2 Library Directories - There are two kinds of library
directories. For object 1libraries, the directory is an Entry Point

Table (EPT). For macro libraries, the directory is a Macro Name Table
(MNT) .

The directory (see Figure C-18) is composed of 4-word entries that
contain information related to all modules in the library file. Note
that if the librarian /N option 1is used for object libraries to
include module names, bit 15 of the relative block number word is set
to 1. If the librarian is invoked with the keyboard monitor LIBRARY
command, module names are never included.

Symbol characters 1-3 (Radix 50)

Symbol characters 4-6 (Radix 50)

Block number relative to start of file

Reserved Relative byte in block
(7 bits) (9 bits)

Figure C-18 Library Directory Format

ADDITIONAL I/O INFORMATION

In the library directory, the symbol characters represent the entry
point or macro name. The relative byte maximum is 777 (octal).

The object library directory starts on the first word after the
library header, word 40 (octal). The object library directory is only
long enough to accomodate the exact number of modules in the 1library.
Space for the object 1library directory is not pre-allocated. The
directory is kept in memory during Librarian operations, and the
amount of available memory is the only limiting factor on the maximum
size of the directory. Reserved locations, those not used by the
directory, are <zero-filled. Modules follow the directory. They are
stored beginning in the next block after the directory.

The macro library directory starts on a block boundary, relative block
1 of the library file. 1Its size is pre-allocated. The default size
is two blocks. This can be <changed by the Librarian /M option.
Unused entries 1in the directory are filled with -1. Macro files are
stored starting on the block boundary after the directory. This 1is

relative block 3 of the library file if the default directory size is
used.

Modules in libraries are concatenated by byte. (See Figure (C-13 for
an example of byte concatenation.) This means that a module can start

on an odd address. When this occurs, the linker shifts the module to
an even address at link time.

C.6.2.3 Library End Block Format - Following all modules in the
library is a specially coded Library End Block, or trailer, which
signifies the end of the file (see Figure C-19).

1 Data block header

10 Data block length

10 Library End Block code

0 Reserved, must be 0

357 Checksum byte

Figure C-19 Library End Block Format

C.6.3 Absolute Binary File Format (LDA)

The linker /L option, or the keyboard monitor LINK command /LDA

option, produces output files 1in a paper tape compatible binary
format.

Paper tape format, shown in Fiqure C-20, is a sequence of data blocks.
Each block represents the data to be loaded into a specific portion of
memory. The data portion of each block consists of the absolute load
address of the block, followed by the absolute data bytes to be loaded
into memory beginning at the load address. There can be as many data
blocks as necessary in an LDA file. The last block of the file is
special: it contains only the program start address, or transfer
address, in 1its data portion. 1If this address is even, the Absolute
Loader passes control to the loaded program at this address. 1If it is
odd (that is, if the program has no transfer address, or the transfer
address was specified as a byte boundary), the 1loader halts upon
completion of loading. The final block of the LDA file is recognized
by the fact that its length is 6 bytes.

C-57

First data block:

1

0

BCL

BCH

ADL

ADH

Data bytes

Checksum byte

Intermediate data

1

0

BCL

BCH

ADL

ADH

Data bytes

Checksum byte

Last data block:

1

0

6

0

JL

JH

Checksum byte

ADDITIONAL I/O INFORMATION

Low order 8 bits of byte count
High order 8 bits of byte count

Low order byte of absolute load address
of data bytes in the block

High order byte of load address

blocks:

This pattern is repeated for all
intermediate blocks

Low byte of start address, or odd number

High byte of start address, or odd number

Figure C-20 Absolute Binary Format (LDA)

ADDITIONAL I/O INFORMATION

LDA format files are used for down-line loading of programs, for
loading stand-alone application programs, and as input to special
programs that put code into ROM (Read-Only Memory). The usual

procedure for loading a program that will execute in a stand-alone
environment is as follows:

1. Toggle the BIN loader into memory.
2. Load the Absolute Loader into memory.
3. Load the LDA file into memory and begin execution.

LSI computer systems have console microcode that makes steps 1 and 2
above unnecessary.

The load module's data blocks contain only absolute binary load data
and absolute load addresses. All global references have been resolved
and the linker has performed the appropriate relocation.

C.6.4 sSave Image File Format (SAV)

Save image format is used for programs that are to be run in the SJ
environment, or in the background in the FB and XM environments. Save
image files normally have a .SAV file type. This format is
essentially an image of the program as it would appear in memory.
(Block 0 of the file corresponds to memory locations 0-776, block 1 to
locations 1000-1776, and so forth.) See Table C-2 for the contents of
block 0. See also Section 11.5.2 of the RT-11 System User's Guide for
more information on the load modules created by the linker.

Table C-2
Information in Block 0
Offset Contents
0 Reserved
2 Reserved
4 Reserved
6 Reserved
10 Reserved
12 Reserved
14 XM BPT trap (XM only)
16 XM BPT trap (XM only)
20 XM IOT trap (XM only)
22 XM IOT trap (XM only)
24 Reserved

(continued on next page)

ADDITIONAL I/0 INPORMATION

Table C-2 (Cont.)
Information in Block 0

Offset Contents

26 Reserved

30 Reserved

32 Reserved

34 Trap vector (TRAP)

36 Trap vector (TRAP)

40 Program's relative start address

42 Initial location of stack pointer
(changed by /M option)

44 Job status word

46 USR swap address

50 Program's high limit

52 Size of program's root segment,
in bytes

(used for REL files only)

54 Stack size, in bytes
(changed by /R option)
(used for REL files only)

56 Size of overlay region, in bytes
(0 if not overlaid)
(used for REL files only)

60 REL file ID ("REL" in Radix-50)
(used for REL files only)

62 Relative block number for start
of relocation information
(used for REL files only)

64 Reserved
66 Reserved
. Reserved
. Reserved
. Reserved
360~
377 Bitmap area

ADDITIONAL I/O INFORMATION

Locations 360-377 in block 0 of the file are restricted for use by the
system. The 1linker stores the program memory usage bits in these
eight words, which are called a bitmap. Each bit represents one
256-word block of memory and is set if the program occupies any part
of that block ot memory. Bit 7 of byte 360 corresponds to locations 0
through 777; bit 6 of byte 360 corresponds to locations 1000 through

1777, and so on. This information is used by the monitor when loading
the program.

The keyboard monitor commands R and RUN cause a program stored in a
SAV file to be loaded and started. (The RUN command is actually a
combination of the GET and START commands.) First, the Keyboard
Monitor reads block 0 of the SAV file into an internal USR buffer. It
extracts information from locations 40-64 and 360-377 (the bitmap,
described above). Using the protection bitmap (called LOWMAP) which
resides in RMON, KMON checks each word in block 0 of the file.
Locations that are protected, such as 1location 54 and the device
interrupt vectors, are not loaded. The locations that are not
protected are loaded into memory from the USR buffer. Next, KMON sets
location 50 to the top of usable memory, or to the top of the user
program, whichever is greater.

If the RUN command (or the GET command) was issued, KMON checks the
bitmap from locations 360-377 of the SAV file. For each bit that is
set, the corresponding block of the SAV file is loaded into memory.
However, if KMON 1is in memory space that the program needs to use,

KMON puts the block of the SAV file into a USR buffer, and then moves
it to the file SWAP.SYS.

Finally, when it is time to begin execution of the program, KMON
transfer control to RMON. The parts of the program, if any, that are
stored in SWAP.SYS are read into memory where they overlay KMON and
possibly the USR. If the R command was issued, KMON does not check
the bitmap to see which blocks of the SAV file to load. Instead, it
jumps to RMON and attempts to read all locations above 1000 into
memory. (The R command does not use SWAP.SYS.) The monitor keeps

track of the fact that KMON and USR are swapped out, and execution of
the program begins.

C.6.5 Relocatable File Format (REL)

A foreground job is linked using the linker /R option or the keyboard
monitor LINK command with the /FOREGROUND option. This causes the

linker to produce output in a linked, relocatable format, with a .REL
file type.

The object modu.es used to create a REL file are 1linked as if they
were a background SAV image, with a base of 1000. This permits users
to use .ASECT directives to store information in locations 0 through
777 in REL files. All global references have been resolved. The REL
file is not relocated at 1link time; relocation information is
included to be used at FRUN time. The relocation information in the

file is used to determine which words in the program must be relocated
when the job is installed in memory.

There are two types of REL files to consider: those programs with
overlay segments, and those without them.

C-61

ADDITIONAL I/O INFORMATION

C.6.5.1 REL Piles without Overlays - A REL file for a program without
overlays appears as shown in Figure C-21.

Block Program Relocation
0 text information

Figure C-21 REL File Without Overlays

Block 0 (relative to the start of the file) contains the information

shown in Table C-2. Some of this information is used by the FRUN
processor.

In the case of a program without overlays, the FRUN processor performs
the following general steps to install a foreground job.

1. Block 0 of the file is read into an internal monitor buffer.

2. The amount of memory required for the job is obtained from
location 52 of block 0 of the file, and the space in memory
is allocated by moving KMON and the USR down.

3. The program text is read into the allocated space.
4. The relocation information is read into an internal buffer.

5. The locations indicated in the relocation information area
are relocated by adding or subtracting the relocation
quantity. This gquantity is the starting address the job
occupies in memory, adjusted by the relocation base of the
file. REL files are linked with a base of 1000.

The relocation information consists of a list of addresses relative to
the start of the user's program. The monitor scans the list. For
each relative address in the list, the monitor computes an actual
address. That address is then loaded with its original contents plus
or minus the relocation constant. The relocation information is shown
in Figqure C-22.

15 14 0

Relative word offset

Original contents

Relative word offset

Original contents

-2

Figure C-22 Relocation Information Format

ADDITIONAL I/0 INFORMATION

In Figure C-22, bits 0-14 represent the relative address to relocate
divided by 2. This implies that relocation is always done on a word
boundary, which is indeed the case. Bit 15 is used to indicate the
type of relocation to perform, positive or negative. The relocation
constant (which is the load address of the program) is added to or
subtracted from the indicated location depending on the sense of bit
15; 0 implies addition, while 1 implies subtraction. The value
177776, or -2, terminates the list of relocation information. The
original contents is a full 16-bit word.

C.6.5.2 REL Files with Overlays - When overlays are included in a
program, the file 1is similar to that of a nonoverlaid program.
However, in addition to the root segment, the overlay segments must
also be relocated. Since overlays are not permanently memory resident
but are read in from the file as needed, they require an additional
operation. FRUN relocates each overlay segment and rewrites it into
the file before the program begins execution. Thus, when the overlay
is called into memory during program execution, it is correct. This
process takes place each time an overlaid file is run with FRUN. The
relocation information for overlay files contains both the list of
addresses to be modified and the original contents of each 1location.
This allows the file to be executed again after the first usage. It
is necessary to preserve the original contents in case some change has
occurred in the operating environment. Examples of these changes
include using a different monitor version, running on a system with a
different amount of memory, and having a different set of device
handlers resident in memory. Figure C-23 shows a REL file with
overlays.

In the case of a REL file with overlays, location 56 of block 0 of the
REL file contains the size in bytes of the overlay region. This size

is added to the size of the program base segment (in location 52) to
allocate space for the job.

After the program base (root) code has been relocated, each existing
overlay 1is read into the program overlay region in memory, relocated
using the overlay relocation information, and then written back into
the file.

The root relocation information section is terminated with a -1. This

-1 is also an indication that an overlay segment relocation block
follows.

The relocation is relative to the start of the program and is
interpreted the same as in the file without overlays. (That is, bit
15 indicates the type of relocation, and the displacement is the true
displacement divided by 2). Encountering -1 indicates that a new
overlay region begins here. A -2 indicates the termination of all
relocation information.

ADDITIONAL I/O INPORMATION

Block 0 REL Control Block

Root Overlay handler and tables
Segment
text

Overlay
1 data

Overlay
N data

Root relocation information

-1 End of root relocation information

Overlay 1 relocation information

-1 End of overlay 1 relocation information

Overlay N relocation information

-1 (If extra root information,
such as relocating
overlay handler information)

-2 End of all relocation information

Figure C-23 REL File with Overlays

C.7 The Device Directory

The device directory begins at physical block 6 of any
directory-structured device and consists of a series of directory
segments that contain the names and lengths of the files on that
device. The directory area 1is variable in length, from 1 to 31
(decimal) directory segments. DUP allows specification of the number
of segments when the directory is initialized. The default value
varies from device to device. See Chapter 8 of the RT-11 System
User's Guide for a table of the default directory segments. Each
directory segment is made up of two physical blocks. Thus, a single
directory segment is 512 words, or 1024 bytes in length. Figure C-24
shows the general format of the device directory.

(@]
|

64

ADDITIONAL I/0 INFORMATION

5 header words

file entries

End of segment
marker

Figure C-24 Device Directory Format

C.7.1 RT-11 File Storage

It is important for users to understand how RT-11 stores files on a
device. All RT-11 files must reside on blocks that are contiguous on
the device. Because the blocks are located in order, one after the
other, the overhead of having pointers in each block to the next block
is eliminated. Figure C-25 shows a simplified diagram of a
file-structured device with two files stored on it.

file empty file
80 blocks 150 blocks 119 blocks

Figure C-25 File-Structured Device

When a file is created in RT-11, the size for the file must be
allocated in the .ENTER programmed request. If the actual size is not
known, as is often the case, the size allocated should be large enough
to accomodate all the data possible. There are two special cases for
the .ENTER request. A length argument of 0 allocates for the file
either one-half the largest space available, or the second largest

space, whichever is bigger. A length argument of -1 allocates the
largest space possible on the device.

A tentative entry is then created on the device with the 1length
allocated. The tentative entry is always followed by an empty entry.
This is in order to account for wunused space if the actual data
written to the file 1is smaller than the size originally allocated.

Figure C-26 shows an example of a tentative entry whose allocated size
is 100 blocks.

file tentative empty file
80 blocks 100 blocks 50 blocks 119 blocks

Figure C-26 Tentative Entry

C-65

ADDITIONAL I/O INFORMATION

Suppose, for example, that while the file is being created by one
program, another program enters a new file, allocating 25 blocks for
it. The device would appear as shown in Figure C-27. Note that every
tentative entry must be followed by an empty entry.

file tentative empty tentative | empty file
80 blocks | 100 blocks | 0 blocks | 25 blocks | 25 blocks | 119 blocks

Figure C-27 Two Tentative Entries

When a program finishes writing data to the device, it closes the
tentative file with the .CLOSE programmed request. The tentative
entry is made permanent. Its length is the actual size of the data
that was written. The size of the empty entry is its original size

plus the difference between the tentative file size and the permanent
file size.

Figure C-28 shows the same example after both tentative files were
closed. The first file's actual length is 75 blocks, and the second
file's length is 10 blocks. Note that the total number of blocks
associated with entries in Figure C-28, including empty entries, is
equal to the total number of blocks in Figure C-26.

file permanent | empty permanent | empty file
80 blocks | 75 blocks | 25 blocks [10 blocks | 40 blocks | 119 blocks

Figure C-28 Permanent Entries

Because of this method of storing files, it is impossible in RT-11 to
extend the size of an existing file from within a running program. To
make an existing file appear bigger from within a program, it is
necessary to read the existing file, allocate a new, larger tentative
entry, and then write both the o0ld and the new data to the new file.
The old file can then be deleted.

The DUP utility program provides an easy way to extend the size of an
existing file. The /T option does this, providing that there exists

an empty entry with sufficient space in it immediately after the data
file.

C.7.2 Directory Header Format

Each directory segment contains a 5-word header, leaving 507 (decimal)

words for directory entries. The contents of the header words are
described in Table C-3.

ADDITIONAL I/0O INFORMATION

Table C-3
Directory Header Words

Word Contents

1 The number of segments available for entries. This
number can be given to DUP when the device is initial-
ized and must be in the range from 1 to 31 (decimal).
Or, DUP can use the default value for the device.

2 Segment number of the next logical directory segment.
The directory is a linked list of segments. This word
is the link word between logically contiguous seg-
ments; if it is equal to 0, there are no more segments
in the list. See Section C.7.4 for more details.

3 The highest segment currently open (each time a new
segment is created, this number is incremented).
This word is updated only in the first segment and
is unused in any but the first segment.

4 The number of extra bytes per directory entry. This
number can be specified when the device is initial-
ized with DUP. Currently, RT-11 does not allow direct
manipulation of information in the extra bytes.

5 Block number on the device where entries (files,
tentatives, or empties) in this segment begin.

C.7.3 Directory Entry Format

The remainder of the segment is filled with directory entries.
entry has the format shown in Figure C-29.

Status word

Name (chars 1-3)
(in Radix-50)

Name (chars 4-6)
(in Radix-50)

File type
(1 to 3 characters)
(in Radix-50)

Total file length

Job # Channel #

Date

Optional extra words

.
9

Figure C-29 Directory Entry Format

C-67

ADDITIONAL I/O INFORMATION

C.7.3.1 Status Word - The status word is broken down into two bytes
of data, as shown in Figure C-30.

Type of entry Reserved

Figure C-30 Status Word
Table C-4 lists the valid entry types.

Table C-4
Entry Types

Value | Type of Entry

1 Tentative file. (One that has been .ENTERed

but not .CLOSEd.) Files of this type are deleted
if not eventually .CLOSEd and are listed by DIR
as <UNUSED> files.

2 An empty file. The name, file type, and date
fields are not used. DIR lists an empty file as
<UNUSED> followed by the length of the unused
area.

4 A permanent entry. A tentative file that has been
.CLOSEd is a permanent file. The name of a perma-
nent file is unique; there can be only one file
with a given name and file type. If another exists
before the .CLOSE is done, it is deleted by the
monitor as part of the .CLOSE operation.

10 End-of-segment marker. RT-11 uses this to determine
when the end of the directory segment has been
reached during a directory search.

Note that an end-of-segment marker can appear as the 512th word of a

segment. It does not have to be followed by a name, type, or other
data.

C.7.3.2 Name and File Type - These three words, in Radix-50, contain
the symbolic name and file type assigned to a file. These words are
usually unused for empty entries. However, the DIR utility program /Q
option (or the keyboard monitor command DIRECTORY with the /DELETED
option) lists the names and file types of deleted files.

C.7.3.3 Total File Length - The file length consists of the number of
blocks taken up by the entry. Attempts to read or write outside the
limits of the file result in an end-of-file error.

ADDITIONAL I/0 INFORMATION

C.7.3.4 Job Number and Channel Number - A tentative file is
associated with a job in one of two ways:

1. In the SJ environment, the sixth word of the entry holds the
channel number on which the file is open. This number enables
the monitor to locate the correct tentative entry for the channel

when the .CLOSE is given. The channel number is loaded into the
even byte of the sixth word.

2. In the FB and XM environments, the channel number is put into
the even byte of the sixth word. 1In addition, the number of the
job that is opening the file is put into the odd byte of the
sixth word. The job number is required to uniquely identify the
correct tentative file during the .CLOSE operation. It 1is also
necessary because both jobs can have files open on their
respective channels. The job number (0 for background, 2 for
foreground) differentiates the tentative files.

NOTE

This sixth word (job number and channel
number word) is used only when the file
is marked as tentative. Once the entry
becomes permanent, the word becomes
unused. The function of the sixth word
while the entry is permanent permanent

is reserved for future use by DIGITAL
software.

C.7.3.5 Date - When a tentative file is created by means of .ENTER,
the system date word is put into the creation date slot for the file.
The date word format is shown in Figure C-31. Bit 15 is reserved for

future use by DIGITAL. This word is 0 if no date has been entered
with the DATE keyboard monitor command.

15114 1312109 8 7 6 5|4 3 2 1 0

Month Day Year - 110
(1-12) (1-31)
(decimal) (decimal) (octal)

Figure C-31 Date Word

C.7.3.6 Extra Words - The number of extra words is determined by
specifying an option to DUP at initialization time. This choice is
reflected by the number of extra bytes per entry in the header words.
Although DUP provides for allocation of extra words, RT-11 provides no
direct facility for manipulating this extra information. Any user

program that needs to access these words must perform its own direct
operations on the RT-11 directory.

Figure C-32 illustrates a typical RT-11 directory segment.

ADDITIONAL I/O INFORMATION

Header block: Four segments available

4
0 No next segment

1 Highest open is #1

0 No extra words per entry

16 Files start at block 16 (octal)

File entries: 2000 Permanent entry

71105 Radix-50 for RKM

54162 Radix-50 for NFB

75273 Radix-50 for SYS
42 File is 42 (octal) blocks long (34 decimal)
0 Used only for tentative entries
0 No creation date

1000 An empty entry
0 (The name and file type of an
0 empty entry are not significant.)

100 100 (octal) blocks long (64 decimal)
0 Used only for tentative entries
0 No creation date

2000 Permanent entry
62570 Radix-50 for PIP
0 Radix-50 for spaces
50553 Radix-50 for MAC
11 11 (octal) blocks long (9 decimal)
0 Used only for tentative entries
0 No creation date

400 Tentative file on channel 1
62570 Radix-50 for PIP
0 Radix-50 for spaces
50553 Radix-50 for MAC
20 20 (octal) blocks long (16 decimal)
1 Job 0 (BG); channel 1
0 No creation date

1000 | (Every tentative entry must be
0 followed by an empty entry.)

1020 1020 (octal) blocks long (528 decimal)
0 Used only for tentative entries
0 No creation date

4000 End of directory segment

Figure C-32 RT-11 Directory Segment

When the tentative file PIP.MAC is closed by the .CLOSE progr ammed
request, the permanent file PIP.MAC is deleted.

To find the starting block of a particular file, first find the
directory segment containing the entry for that file. Then take the
starting block number given in the fifth word of that directory
segment and add to it the length of each file in the directory before
the desired file. For example, in Figure C-=32, the permanent file
PIP.MAC will begin at block number 160 (octal).

C-70

ADDITIONAL I/O INFORMATION

C.7.4 Size and Number of Files

The number of files that can be stored on an RT-11 device depends on
the number of segments in the device's directory and the number of
extra words per entry. The maximum number of directory segments on
any RT-11 device is 31 (decimal). The following formula can be used
to calculate the theoretical maximum number of directory entries.

512-6
31 *

7 + N

In the formula shown above,

N equals the number of extra information words per entry. If N
is 0, the maximum is 2232 (decimal) entries.

Note that all divisions are integer. That is, the remainder should be
discarded. No cancelling is valid.

In the formula shown above, the -2 1is required for two reasons.
First, 1in order to enter a file, the tentative entry must be followed
by an empty entry. Second, an end-of-segment entry must exist. Note
that on a disk squeezed by DUP, the end-of-segment entry might not be
a full entry, but may contain just the status word.

If files are added sequentially (that 1is, one immediately after
another) without deleting any files, roughly one-half the total number
of entries will fit on the device before a directory overflow occurs.

This situation results from the way filled directory segments are
handled.

When a directory segment becomes full and it is necessary to open a
new segment, approximately one half the entries of the filled segment
are moved to the newly-opened segment. Thus, when the final segment

is full, all previous segments have approximately one half their total
capacity.

If files are continually added to a device and the SQUEEZE keyboard
monitor command 1is not issued, the maximum number of entries can be
computed from the following formula:

S
(M=1) * - + S
2
In the formula shown above,

M equals the number of directory segments

S can be computed from the following formula:

512 - 5
7 + N

N equals the number of extra information words per entry.

ADDITIONAL I/O INFORMATION

The theoretical total of directory entries (see the first formula,
above) can be realized by compressing the device (by using the DUP /S
option or the monitor SQUEEZE command) when the directory fills up.
DUP packs the directory segments as well as the physical device.

C.7.5 Directory Segment Extensions

RT-11 allows a maximum of 31 (decimal) directory segments. This
section covers the processing of a directory segment. For
illustrative purposes, the following symbols are used:

nt. This represents a directory segment with some
! directory entries. The segment number is shown as n.
!
!
nt. This represents a segment that is full. That is, no more

]
t. entries will fit in the segment.
!
]

The directory starts out with entries entered into segment 1:

As entries are added, segment 1 fills:

1

e
e o o o

When this occurs and an attempt is made to add another entry to the
directory, the system must open another directory segment. If another
segment is available, the following occurs:

1. One half of the entries from the filled segment are put into
the next available segment and the header words of the new
segment are filled with the correct information.

2. The shortened segment is rewritten to the disk.
3. The directory segment links are set.
4. The file is entered in either the shortened or the newly
created segment, depending on which segment has the an emtpy
entry of the required size.
NOTE
If the last segment becomes full and an
attempt is made to enter another file, a

fatal error occurs and an error message
is generated.

ADDITIONAL I/O INFPORMATION

Thus, in the normal case, the segment appears as:

1 Before extension. Segment 1 is full.

« o o o

!, After extension. Half the entries are in the
!, new segment, half in the old. Segment 1 is

! linked to segment 2.
!

t—tem b= b
.

If many more files are entered, they fill up the second segment and
overflow into the third segment, if it is available.

.
.

P

o= b= o= o=
o o

]
t.

!

!

In this case, the segments are contiguous. However, the links between
them are still required by the USR. The links are also required when
the segments are not contiguous. For example, if a large file were
deleted from segment 2 and many small files were entered, it would
then be possible to overflow segment 2 again. 1If this occurred and a
fourth segment existed, the directory would appear as follows:

1 !, In this case, segment 2 overflows into
', segment 4 and the links are used to link
1 ! logical pieces rather than physical
Links pieces.
to 2 </
2 .
t.
!
2 !
Links
to 4
3] ! -
!
!
4 !
Links
to 3

4 >t Segment 4 is linked to segment 3 because segment
1. 2 was previously linked to 3.

ADDITIONAL I/O INFORMATION

C.8 Magtape Structure

This section covers the magtape file structure as implemented in RT-11
V03 and VO03B. RT-11 V03 and VO3B can read magtapes created under
RT-11 V02C. RT-11 magtapes use a subset of the VOL1, HDR1l, and EOFl1
ANSI standard 1labels. RT-11 automatically writes magtapes with ANSI

standard labels. RT-11 magtape implementation includes the following
restrictions:

1. There is no EOV (end-of-volume) support. This means that no
file can continue from the end of one tape volume over onto
another volume.

2. RT-11 does not ignore noise blocks on input.

3. RT-11 assumes that data is written in records of 512

characters per block. The logical record size equals the
physical record size.

Note that the hardware magtape handler (as opposed to the
file-structured magtape handler) can read data in any format
at all. Or, users can make use of .SPFUN programmed requests
and the file~-structured magtape handler to read tapes whose
data is in a non-standard format. The RT-11 utility
programs, such as PIP, DUP, and DIR, can only read and write
tapes in the standard RT-11 format of 512-character blocks.

4. RT-11 provides no volume protection by checking access
fields.

In the diagrams shown below, an asterisk (*) represents a tape mark.
The actual tape mark itself depends on the encoding scheme that the
hardware uses. A typical nine channel NRZ tape mark consists of one
tape character (octal 23) followed by seven blank spaces and an LRCC
(octal 23). Programmers should consult the hardware manual for their

particular tape devices if the format of the tape mark is important to
them.

A file stored on magtape has the following structure:
HDR1 * data * EOF1 *

A volume containing a single file has the following format:
VOL1 HDR1 * data * EQF1 * * *

A volume containing two files has the following format:
VOL1 HDR1 * data * EOF1 * HDR1 * data * EQF1l * * *

A double tape mark following an EOF1 * label indicates logical end of
tape. (Note that the EOF1 1label is considered to consist of the
actual EOFl information plus a single tape mark.)
A magtape that has been initialized has the following format:

VOL1 HDR1 * * EQF1 * * *

A bootable magtape is a multi-file volume that has the following
format:

VOL1 BOOT HDR1 * data * EOF1 * * *

ADDITIONAL I/O INPORMATION

To create an RT-11 bootable magtape, the file MBOOT.BOT must
to copy the primary bootstrap.
by BOOT in the diagram above.

be used
The primary bootstrap is represented
It occupies a 256-word physical block.

The first real file on the tape must be the secondary bootstrap, the
file MSBOOT.BOT. If the tape is designed to allow another user to
create another bootable magtape, the file MBOOT.BOT should be copied
to the tape, as a file. (This is in addition to copying it into the
boot block at the beginning of the tape.) Instructions for building

bootable magtapes are in the RT-11 System Generation Manual.

Each label on the tape, as shown in the diagrams above, occupies the
first 80 bytes of a 256-word physical block, and each byte in the
label contains an ASCII character. (That is, if the content of a byte
is listed as 'l', the byte contains the ASCII code and not the octal
code for 'l'.) Table C-5 shows the contents of the first 80 bytes in
the three labels. Note that the VOL1l, HDR1l, and EOF1l occupy a full
256-word block each, of which only the first 80 bytes are meaningful.

The meanings of the table headings for Table C-5 are as follows:

CP:

Field Name:
L:

Content:
(space) :

Character position in label
Reference name of field
Length of field in bytes
Content of field

ASCII space character

Table C-5
ANSI Magtape Labels in RT-11
Volume Header Label (VOL1)
CP Field Name L Content
1-3 Label identifier 3 VOL
4 Label number 1 1
5-10 Volume identifier 6 Volume Label. If no volume ID
is specified by the user at
initialization time, the
default is RT11A(space)
11 Accessibility 1 (Space)
12-37 Reserved 26 (Spaces)
38-50 Owner identifier 13 CP38 =D This means tape
CP39 = ¢ was written by
CP40 = B DEC PDP-11
CP40-50 = Owner Name. Maximum
is ten characters;
default is (spaces)
51 DEC standard version 1 1
52-79 Reserved 28 (Spaces)
80 Label standard version 1 3
File Header label (HDR1)
Cp Field Name L Content

(continued on next page)

ADDITIONAL I/O INFORMATION

Table C-5 (Cont.)
ANSI Magtape Labels in RT-11
1-3 Label identifier 3 HDR
4 Label number 1 1
5-21 File identifier 17 The 6-character ASCII file name
(spaces can be used to pad the
file name to six characters;
the dot can be written without
the padding), dot, 3-character
file type. This field is left-
justified and followed by
spaces.
22-27 File set identifier 6 RT11A (space)
28-31 File section number 4 0001
32-35 File sequence number 4 First file on tape has 0001.
This value is incremented by 1
for each succeeding file. On a
newly initialized tape, this
value is 0000.
36-39 Generation number 4 0001
40-41 Generation version 2 00
42-47 Creation date 6 (Space) followed by (year*1000)
+ day in ASCII; (space)
followed by 00000 if no date.
For example, 2/1/75 is stored
as (space)75032.
48-53 Expiration date 6 (Space) followed by 00000
indicates an expired file.
54 Accessibility 1 (Space)
55-60 Block count 6 000000
61-73 System code 13 DECRT11A (space) followed by
spaces.
74-80 Reserved 7 (Spaces)

First End-of-File Label (EOF1)

This label is the same as the HDR1l label, with the following

exceptions:

Ccp Field Name L Content

1-3 Label identifier 3 EOF

55-60 Block count 6 Number of data blocks since the

preceding HDR1 label, unless a
.SPFUN operation is done. If
.SPFUNs are issued, the block
count is 0. However, if only
256-word .SPFUN writes are
done, block count is accurate.

C.9 Cassette Structure

A blank, newly initialized TU60 cassette appears in the

in Figure C-33.

format shown

Clear Extended Sentinel Unpredictable
leader file gap file information
32 bytes
(decimal)
Figure C-33 1Initialized Cassette Format

C-76

ADDITIONAL I/O INFORMATION

A cassette with a file on it appears as shown in Figure C-34.

Clear Extended | Header | Block | Data |Block | Data File | Sentinel
leader | file gap | block gap block|gap block | gap file

32 bytes 128 bytes
(decimal) (decimal)

Figure C-34 Cassette With Data

Files normally have data written in 128-byte (decimal) blocks. This
can be altered by writing cassettes while in hardware mode. In
hardware mode, the user program must handle the processing of any

headers and sentinel files. In software mode, the handler
automatically does this.

Figure C-34 illustrates a file terminated in the usual manner, by a
sentinel file. However, the physical end of cassette can occur before

the actual end of the file. This format appears as shown in Fiqure
C-35.

Block Data Block Clear
gap block gap trailer
or as:
Block Data Block Data Clear
gap block gap block trailer
(Partially
written)

Figure C-35 Physical End of Cassette

In the latter case, for multi-volume processing, the partially written
block must be rewritten as the first data block of the next volume.

The file header is a 32-byte (decimal) block that is the first block
of any data file on a cassette. If the first byte of the header is
null (000), the header is interpreted as a sentinel file, which is an
indication of 1logical end of cassette. The format of the header is
illustrated in Table C-6. The data in Table C-6 is binary (that is, 0
equals a byte of 0) unless it is specified to be ASCII.

c-77

ADDITIONAL I/O INPORMATION

Table C-6
Cassette File Header Format

Byte
Number | Contents
0-5 File name in ASCII characters (ASCII is assumed to
imply a 7-bit code).
6-8 File type in ASCII characters
9 Data type (0 for RT-11)
10-11 Block length of 128 (decimal), 200 (octal). Byte 10
= 0, high order; byte 11 = 200, low order.

12 File sequence number. (0 for single volume file or
the first volume of a multi-volume file;
successive numbers are used for continuations.

13 Level 1; this byte is a 1. This byte must be changed
to 0 if CAPS-11 will be used to load files. See
the RT-11 System Generation Manual for details.

14-19 Date of file creation (six ASCII digits representing
day (0-31); month (0-12); and last two digits of
the year; 0 or 40 (octal) in first byte means no
date present)

20-21 0

22 Record attributes (0 is RT-11 cassette)

23-28 Reserved

29-31 Reserved for user

c-78

Absolute binary file format,
Cc-57
ACCEPT statement, 4-32
Access key, 3-3
Adding a device to the tables,
c-5
Adding a SET option, 1-12
Adding queue elements, 2-94,
4-52
Addr, 2-28
Address boundary,
Address conversion, 3-15
Address register,
page, 3-7, 3-18, 3-19
Address space, 3-2, 3-6
logical, 3-6
program logical, 3-4
program virtual, 3-4
virtual, 3-5, 3-7
Address window, 3-4
creating, 3-21
Address,
base, 3-3
buffer, a-10
high memory, 2-9
physical, 3-4
Resident Monitor, 2-11
return, A-15
starting, C-54
subroutine return, A-16
transfer, C-54
USR load, 2-9
virtual, 3-4, 3-12
Addresses,
converting mapped to physical,
1-18
vector, 2-6
Addressing capabilities, 3-1
Addressing,
logical, 3-1
virtual, 3-1
AJFLT, 4-23
Allocating a channel, 4-45
Allocating regions in extended
memory, 3-8
ANSI magtape labels, C-75
Application,
multi-user,
Architecture,
RT-11, 3-4
Area, 2-28
impure, 3-13
Argument blocks,
EMT, 2-5
Argument, A-4

3-5

Index-1

INDEX

Arguments,
programmed request, 2-5, 2-28
Arrays, 4-21, 4-22
data, 3-2
LOGICAL*1, 4-20
virtual disk, 3-1
AS.CAR, 1-65
AS.CTC, 1-65
AS.INP, 1-65
AS.OUT, 1-65
ASCIZ strings, 4-20
Assembler,
MACRO, 3-1
see also MACRO, MACRO-11
Assembling a system device
handler, C-38
Assembling graphics programs,
A-18
Assembling the EL handler, 1-84
Assembling VTBASE, A-28
Assembling VTCALl, A-28
Assembling VTCAL2, A-28
Assembling VTCAL3, A-28
Assembling VTCAL4, A-28
Assembly instructions, A-27
Assembly language call, A-4
Assembly language display
support, A-2
Assembly language graphics
programming, A-20
Assigning logical unit numbers,
4-32
Asynchronous 1/0, C-8
Asynchronous terminal status
word, 1-65
Asynchronous trap entry points,
1-10
Attaching terminals, 2-80, 4-94
Available memory,
obtaining, 2-113

Background job,
virtual, 3-13

Bad block replacement, 1-60,
1-62

Base address, 3-3

Base region, 3-8

Base segment, 3-4, A-2

BASIC-11 graphics software
subroutine structure, A-23

BASIC-1l1 graphics software,
A-15, A-20

BCC, 2-18

INDEX (Cont.)

BCS, 2-18
Bit patterns, C-3
Bit,
virtual image, 2-8
Bitmap, C-61
low memory protection, C-6
Bits,
window status, 3-19
.BLANK, A-4
Blanking a user file, A-2
Blanking user display file,
A-4
Blink, A-9
Blinking cursor, A-3
Blk, 2-28
BLKOFF,
see Display processor mnemonic
BLKON,
see Display processor mnemonic
Block 0 information, C-59
Block, 3-2
COMMON, 4-22
parameter, 3-15
region definition, 3-9, 3-14,
3-15, 3-21, 3-22, 3-23
window control, 3-5, 3-21
window definition, 3-5, 3-6,
3-12, 3-14, 3-15, 3-17, 3-25,
3-26
Blocks,
descriptor, 3-9
EMT argument, 2-5
formatted binary, C-54
Bootable magtape, C-75
Boundary,
virtual address, 3-8, 3-18
Breaking link between internal
display file and scroll file,
A-14
Brightness knob, A-11
Buf, 2-28
Buffer address, A-10
Buffer flag, A-8, A-12, A-16
Buffer pointer, A-7
Buffer structure, A-8
Buffer, A-10
scroll text, A-14
status, A-12
user status, A-16
Buffers, 3-2
contiguous, 3-14
1/0, 3-15
Building the EL handler, 1-84
Building VTLIB.OBJ, A-28
By-passing call to user display
file, A-4
Byte concatenation, C-52
Byte,
moving from user buffer, 1-19
moving to user buffer, 1-18

Index-2

C bit,
see Carry bit

Cc.coMpP, C-10

C.DEVQ, C-12

C.HOT, C-10

C.JNUM, C-10

C.LENG, C-12

C.LINK, C-10

C.LOT, C-10

C.SBLK, C-12

C.SEQ, C-10

C.SYs, C-10

C.USED, C-12

Calculating size and number of
files, C-71

Calculating time in seconds,
4-107

CALL statement, 4-20

Calling SYSP4 subprograms, 4-3

Calling the CSI in special mode,
4-36

Calling the EL handler from a
device handler, 1-83

Cancelling mark time requests,

1-20, 2-36
Cancelling schedule requests,
4-35

Card code conversions, 1-56
Card reader handler, 1-55
Carry bit (C bit), 2-18
Cassette file header format,
c-78
Cassette hardware mode, 1-49
Cassette software mode, 1-49
Cassette special functions, 1-52
Cassette structure, C-75
Cassette tape handler, 1-49
Cassette with data, C-77
Cassette,
end of, C=-77
initialized, C-76
reading data from, 1-51
writing data to, 1-51
Cathode ray tube (CRT), A-1
Causing tracking object to
appear on display, A-13
Cblk, 2-28
.CDFN programmed request, 2-30,
3-33, C-12
Chain area, 4-107
.CHAIN programmed request, 2-31
CHAIN, 4-23
Chaining programs, 4-23, 4-102
Chaining to another program,
2-31
Chaining, 3-1
Chan, 2-28
see also Channel number
Channel format,
I1/0, C-12

INDEX (Cont.)

Channel number, 2-5, C-69
see also Chan
Channel. status word (CSW), 2-46,
Cc-13
Channel status,
obtaining, 2-46
Channel-oriented operations,
4-19
Channels, 4-34, 4-35, 4-38,
4-44, 4-45, 4-46, 4-61,
4-92, 4-100
closing, 2-35
copying, 2-33
deactivating, 2-93
defining new, 2-30
Char,
see Display processor mnemonic
Character register, A-9
Character string functions, 4-20
Character string variables, 4-21
Characters,
fi11, 2-11
moving to terminals, 2-84
obtaining from terminals, 2-83
.CHCOPY programmed request, 2-31
Chrcent, 2-28
.CLEAR, A-4
example of, A-5
.CLOSE programmed request, 1-39,
1-47, 1-51, 2-35
CLOSE, 4-108
CLOSEC, 4-17, 4-24, 4-36, 4-42,
4-44, 4-92
Closing channels, 2-35, 4-24
.CMKT programmed request, 2-36
.CNTXSW programmed request, 2-37,
3-33
Code, 2-28
$CODE, 4-6
Code,
region identifier, 3-18
window identifier, 3-17
CODE=NOSET, 2-29
CODE=SET, 2-29
Codes,
soft error, 2-68
special function, 2-117
Command files,
indirect, 2-64
Command String Interpreter (CSI),
1-2, 2-38, 2-41, 4-36
Command String Interpreter error
messages, 2-45
COMMON block, 4-22
Communication area, 3-15
Comparing character strings,
4-105
Compatibility job,
see Privileged job
Compatibility mapping,
see Privileged mapping

Completion queue element, C-10
Completion routine restrictions,
4-18
Completion routines, 1-11, 2-17,
2-78, 2-97, 2-98, 2-102,
2-103, 2-110, 2-111, 2-119,
4-7, 4-17, 4-63, 4-74, 4-78,
4-80, 4-93, 4-110, A-14
Complex functions, 4-5
Components,
monitor software, 1-2
CONCAT, 4-25
Concatenated object module,
A-18
Concatenating character strings,
4-25
Concatenating modules, C-52
Concatenating strings, 4-103
Concepts,
RT-11 system, 2-4
Configuration word, 2-14
terminal, 2-87

Console output, A-6
Console terminal,
transferring characters from,
2-127
transferring characters to,
2-129
Constant,
relocation, 3-3
Context information, 3-14
Context switching in extended
memory, 3-14
Context switching, 1-15, 2-37
Contiguous buffers, 3-14
Control block,
region, 3-24
window, 3-5, 3-21
Conventions,
SYSF4, 4-2
Conversion of device handlers,
1-21
Conversion,
address, 3-15
Conversions,
card code, 1-56
Converting ASCII to RADIX-50,
4-53, 4-102
Converting handlers to Version
3 format, 1-21
Converting INTEGER*4 to INTEGER*2,

4-46

Converting INTEGER*4 to REAL*4,
4-23

Converting INTEGER*4 to REAL*S,
4-28, 4-40

Converting internal time format,
4-26

Converting mapped addresses to
physical addresses, 1-18

Index-3

INDEX (Cont.)

Converting RADIX-50 to ASCII,
4-101
Converting the error log file,
1-73
Converting time to ASCII, 4-111
Converting Version 1 macro calls
to Version 3, 2-143
Copying channels, 2-33, 4-35
Copying strings between arrays,
4-106
Copying substrings, 4-109
CR handler, 1-55
.CRAW programmed request, 3-11,
3-15, 3-18, 3-21, 3-25
Create a region, 3-15
Creating a region definition
block, 3-34
Creating a region, 3-24, 3-35
Creating a window definition
block, 3-35
Creating a window, 3-15, 3-21,
3-35
Creating device-identifier
codes, C-4
Creating files, 2-54
Creating SYSLIB, 4-7
Creating virtual address
windows, 3-5
Creating VTHDLR, A-28
CREF,
see Cross-reference listing
Cross-reference (CREF) listing,
3-1
.CRRG programmed request, 3-15,
3-18, 3-21, 3-24
CRT,
see Cathode ray tube
Crtn, 2-28
CsI,
see Command String Interpreter
.CSIGEN programmed request, 2-38,
2-41
.CSTAT programmed request, 2-46
CT handler, 1-49
.CTIMIO macro, 1-20
CTRL/B, 2-128, 4-77
CTRL/C, 1-60, 2-128, 4-76, 4-104
intercepting, 2-108
CTRL/F, 2-128, 4-77
CTRL/O, 1-59, 2-128, 4-103
resetting, 2-86, 2-95, 4-97
CTRL/Q, 2-128
CTRL/S, 2~-128
CTRL/U, 2-128, 4-76
CTRL/Z, 1-59, 2-128, 4-76
CVTTIM, 4-26, 4-29

Data arrays, 2

3-
Data file, 3-1

Index-4

Data format converter, 1-70
Data roll-over, 2-48
DATA statement, 4-19
Data structures, 3-15
1/0, C-1
Data transfer programmed
requests, 2-19
Data,
reading, 2-100
receiving, 2-96
sending, 2-110
writing, 2-134
.DATE programmed request, 2-47
Date, C-69
obtaining the, 2-47
Dblk, 2-28
see also Device block
Deactivating channels, 2-93
Deallocating a channel, 4-44
Deallocating regions in extended
memory, 3-8
DECnet applications, 1-20
DECODE strings, 4-20
Default extensions, A-28
Default mapping, 3-13, 3-14,
3-27
Default parameter, A-1l1
Defining new channels, 2-30,
4-34
Defining windows, 3-8
Definition block, 3-15, 3-17,
3-22, 3-23, 3-26
region, 3-9, 3-14, 3-15, 3-21
window, 3-5, 3-6, 3-12, 3-14,
3-25
DELETE key, 2-128
.DELETE programmed request, 1-38,
1-50, 2-49
DELETE, 4-76
Deleting files, 2-49, 4-39
Description of graphics macros,
A-4
Description,
extended memory functional,
3-4
Descriptor blocks, 3-9
Detaching terminals, 2-81, 4-95
Determining channel number, 4-46
Determining time of day, 4-112
Determining volume size, 2-116
DEV macro, C-3, C-=5
Device block, 2-5
see also Dblk
Device directory, C-64
Device error report, 1-78
Device handler block number
table, C-4
Device handler conversion,
extended memory, 1-24
Device handler entry point table,
Cc-4

INDEX

Device handler macros, C-39
Device handler skeleton outline,
1-27
Device handler,
calling the EL handler from,
1-83
card reader, 1-55
commented sample, C-15, C-42
error logging, 1-67
null, 1-62
paper tape, 1-59
patching a Version 2, 1-21
PC, C-42
RK, C-15
RK06/07 disk, 1-60
RLO1l disk, 1-62
system, C-38
terminal, 1-59
TT, C-2
writing a, C-15, C-42
Device handlers and extended
memory, 3-33
Device handlers, 1-1, 1-2, 1-7
converting to Version 3 format,
1-21
diskette, 1-54
EL, 1-69
full conversion of, 1-23
installing and removing, 1-20
loading, 2-58
magnetic tape, 1-30
monitor services for, 1-13
multi-vector, 1-10
parts of, 1-8
resident, C-5
single-vector, 1-9
source edit conversion of, 1-22
unloading, 2-60
Version 2, 1-8
Version 3, 1-8
Device name tables, C-5
Device ownership table, C-5
Device ownership, C-5
.DEVICE programmed request, 2-50
Device registers,
loading, 2-50
Device statistics report, 1-79
Device status information,
obtaining, 2-52
Device status table, C-2
Device status word, C-2, C-3,
Cc-6
Device time-out support, 1-19
DEVICE, 4-27, 4-49
Device,
adding to the tables, C-5
file structured, C-65
installing a, C-2
Device-identifier byte, C-4
Device-identifier codes,
creating, C-4

(Cont.)

Devices on a system,
number of, C-1
Devices,
non-processor request, 1l-17,
1-24
programmed transfer, 1-17, 1-26
programmed for specific, 1-30
DHALT instruction, A-16
Direction,
expansion, 3-3
Directories,
library, C=-=56
Directory entry format, C-67
Directory header format, C-66
Directory operations,
magnetic tape, 1-39
Directory segment extensions,
c-72
Directory segment links, C-73
Directory segments, C-64, C-70
Directory status word, C-68
Directory words,
extra, C-69
Directory,
device, C-64
macro library, C-57
object library, C-57
Discontinuity, 3-8
Diskette handlers, 1-54
Diskette special functions, 1-54
Display application program,
A-6
Display file handler module,
A-18
VTBASE.OBJ, A-18
VTCAL1.0BJ, A-18
VTCAL2.0BJ, A-18
VITCAL3.0BJ, A-18
VICAL4.0BJ, A-18
Display file handler, A-1, A-18,
A-20
examples, A-31
Display file structure, A-20
Display halt instruction (DHALT),
A-16
Display monitor, A-13
Display processor instruction
mnemonic, A-2
Display processor instruction,
A-15, A-16
DHALT, A-~16
DJSR, A-15
DNAME, A-17
DRET, A-16

Display processor loop, A-3
Display processor mnemonic,
table, A-26
Display processor status
register, A-8
Display processor, A-1

Index-5

INDEX (Cont.)

Display program counter, A-8,
A-16

Display status instruction
(DSTAT) , A-16

Display status register, A-8,
A-16

Display stop instruction, A-15

Display stop interrupt handler,
A-15

Display stop interrupt, A-16,
A-17

DJFLT, 4-28

DJMP instruction, A-6

DJIMP,

see Display processor mnemonic

DJSR instruction, A-6, A-15

DL handler, 1-62

DM handler, 1-60

DNAME instruction, A-17

DNOP,

see Display processor mnemonic

Double precision functions, 4-5

Double-buffered I/0, 2-140

Down-line loading, C-59

.DRAST macro, 1-8, 1-10

.DRBEG macro, 1-8, 1-9, 1-17,
C~-

.DREND3gacro, l1-8, 1-18, 1-19,
c-39

DRET instruction, A-16

.DRFIN macro, 1-8, 1-11

DSTAT instruction, A-16

.DSTATUS programmed request,
2-52, C=2

$DVREC table, C-4

DX handler, 1-54

DY handler, 1-54

Dynamic region, 3-2, 3-8, 3-26

Echo, A-3
Edge flag, A-14
Edge indicator, A-9
EIS,
see Extended Instruction Set
EL handler, 1-67, 1-69
assembling, 1-84
building the, 1-84
calling from a device handler,
1-83
linking, 1-84
loading, 1-71
making calls to, 1-82
program interfaces to, 1-81
.ELAW programmed request, 3-15,
3=-22
Eliminating a region, 3-15,
3-25

Eliminating an address window,
3-15, 3-22
ELPTR, 1-80
SELPTR, 1-82
-ELRG programmed request, 3-15,
3-25
Empty entry, 2-17
EMT argument blocks, 2-5
EMT error byte, 2-9
EMT instruction, A-4
EMT trap vector, 2-6
EMT' 2-2
Emulator trap,
see EMT
ENCODE strings, 4-20
End of cassette, C-77
-ENTER programmed request, 1-33,
1-50, 2-54
Entering a new file, 4-42
Entry points, asynchronous trap,
1-10
SENTRY table, C-4
Entry,
empty, 2-17
permanent, C-66
tentative, C-65
EOFl, C-75
ERLSA, 1-84
ERLS$B, 1-84
ERLSG, 1-9
ERLSU, 1-84
ERLSW, 1-84
Error buffer, 1-70
writing on line, 1-81
Error byte, 2-18
EMT, 2-9
Error checking,
extended memory, 3-27
Error code, A-6
user, 2-10

Error codes,
extended memory, 3-29
soft, 2-68
Error log file,
converting, 1-73
Error logging example, 1-76
Error logging handler, 1-69
Error logging subsystem, 1-67
Error logging, 1-17, 1-66
Error logging,
using, 1-71
Error message,
monitor, 2-18
Error messages,
Command String Interpreter,
2-45
Error recovery algorithm for
magtape, 1-46

Index-6

