DISPLAY FILE HANDLER
following the directions in A.8.5, be sure to use the Version 03
Linker:
LINK PICTUR,VTLIB

VTLIB (Handler Modules):

Module CSECT Contains Globals
VTCAL1 $GT1 .CLEAR SVINIT
.START $VSTRT
.STOP $VSTOP
. INSRT SVNSRT
. REMOV SVRMOV
VTCAL2 $GT2 . BLANK SVBLNK
.RESTR SVRSTR
VTCAL3 $GT3 . LPEN SVLPEN
.NAME SNAME
.STAT SVSTPM
.SYNC $SYNC
.NOSYN SNOSYN
. TRACK SVTRAK
VTCAL4 $GT4 . LNKRT $VRTLK
. UNLNK SVUNLK
.SCROL SVSCRL
VTBASE $GTB Interrupt handlers SDFILE

and internal
display file.

The five modules in VTHDLR can be used in three different ways. When
space 1is not critical, the most straightforward way is to link VTHDLR
directly with a display program. The following command is an example.

LINK PICTUR,VTHDLR

It is often necessary to conserve space, however, and selective
loading of modules is possible by first creating an indexed object
module library from VTHDLR and then by making global calls within the

display program. The following command creates an indexed object
module library.

LIBRARY/CREATE VTLIB VTHDLR

To further conserve space with overlays, it 1is also possible to
extract individual object modules from a library and create separate
object module files. For example, to link a display program using
overlays, the following statements are a typical sequence of creating,
extracting and linking commands. (NOTE: the modules VTCALl and

VICAL2 must be in the same overlay if any global in either one is
used.)

A-19

DISPLAY FILE HANDLER

.LIBRARY/CREATE VTLIB VTHDLR

.

.LIBRARY/EXTRACT VTLIB VTCAL1

GLOBAL? $VSTRT !moves entire module with SVSTRT to VTCAL1
GLOBAL? !Terminates prompting sequence
.LIBRARY/EXTRACT VTLIB VTCAL2

GLOBAL? $VBLNK !Moves the entire module to VTCAL2
GLOBAL?

.LIBRARY/EXTRACT VTLIB VTCAL3

GLOBAL? S$VLPEN !Moves the entire module

GLOBAL?

.LIBRARY/EXTRACT VTLIB VTCAL4

GLOBAL? $VRTLK !Moves the entire module

GLOBAL?

.LIBRARY/EXTRACT VTLIB VTBASE

GLOBAL? $DFILE !Moves the entire module

GLOBAL?

. LINK/PROMPT PICTUR,VTBASE
*VTCALl1,VTCAL2,VTCAL3/0:1
*VTCAL4/0:1

*//

A.5 DISPLAY FILE STRUCTURE

The Display File Handler supports a variety of display file
structures, takes over the job of display processor management for the
programmer, and may be used for both assembly language graphics
programming and for systems program development. For example, the
Handler supports the tagged subpicture file structure used by the
BASIC-11 graphics software, as well as simple file structures. These
are discussed in this section.

A.5.1 Subroutine Calls

A subroutine call instruction, with the mnemonic DJSR, is implemented
using the display stop (DSTOP) instruction with an interrupt. The
display stop interrupt routine in the Display File Handler simulates
the DJSR instruction, “and this allows great flexibility in choosing
the characteristics of the DJSR instruction.

A-20

DISPLAY FILE HANDLER

The DJSR instruction stops the display processor and requests an
interrupt. The DJSR instruction may be followed by two or more words,
and in this implementation the exact number may be varied by the
programmer at any time. The basic subroutine call has this form:

DJSR
Return Address
Subroutine Address

In practice, simple calls to subroutines could look like:

DJSR
.WORD .+4
.WORD SUB

where SUB is the address of the subroutine. Control will return to
the display instruction following the 1last word of the subroutine
call. This structure permits a call to the subroutine to be easily
by-passed without stopping the display processor, by replacing the
DJSR with a display jump (DJMP) instruction:

DJMP
.WORD .+4
.WORD SuB

A more complex display file structure 1is possible if the return
address is generalized:

.DJSR
.WORD NEXT
.WORD SuB

where NEXT is the generalized return address. This is equivalent to
the sequence:

DJSR

.WORD .+4
.WORD SUB
DJIMP

.WORD NEXT

It is also possible to store non-graphic data such as tags and
pointers in the subroutine call sequence, such as is done in the
tagged subpicture display file structure of the BASIC-11 graphics
software. This technique looks like:

DJSR
.WORD NEXT
.WORD SUB
DATA

NEXT: .

For simple applications where the flexibility of the DJSR instruction

A-21

DISPLAY FILE HANDLER

described above is not needed and the resultant overhead is not
desired, the Display File Handler (VTBASE.MAC and VTCALL.MAC) can be
conditionally re-assembled to produce a simple DJSR call. If NOTAG is

defined during the assembly, the Handler will be configured to support
this simple DJSR call:

DJSR
.WORD SUB

where SUB is the address of the subroutine. Defining NOTAG will
eliminate the subpicture tag capability, and with it the tracking
object, which uses the tag feature to identify itself to the light pen
interrupt handler.

Whatever the DJSR format used, all subroutines and the user main file
must be terminated with a subroutine return instruction. This is
implemented as a display stop instruction (given the mnemonic DRET)
with an argument of zero. A subroutine then has the form:

SUB: Display Code
DRET
.WORD 0

A.5.2 Main File/Subroutine Structure

A common method of structuring display files is to have a main file
which calls a series of display subroutines. Each subroutine will
produce a picture element and may be called many times to build up a

picture, producing economy of code. If the following macros are
defined:

-MACRO CALL <ARG>
DJSR

.WORD .+4

.WORD ARG

. ENDM

.MACRO RETURN
DRET

.WORD 0

. ENDM

then a main file/subroutine file structure would look like:

sMAIN DISPLAY FILE

’
MAIN: Display Code
CALL SUB1 ;CALL SUBROUTINE 1
Display Code
CALL SUB2 ;CALL SUBROUTINE 2
. ;ETC
RETURN

A-22

DISPLAY FILE HANDLER

;

;DISPLAY SUBROUTINES

;

SUB1: Display Code ;SUBROUTINE 1
RETURN

i

SUB2: Display Code ;SUBROUTINE 2
RETURN

. ;ETC.

.

A.5.3 BASIC-1l1 Graphic Software Subroutine Structure

An example of another method of structuring display files 1is the
tagged subpicture structure used by BASIC-1l1 graphic software. The
display file 1is divided into distinguishable elements called
subpictures, each of which has its own unique tag.

The subpicture is constructed as a subroutine call followed by the
subroutine. It is essentially a merger of the main file/subroutine
structure into an in-line sequence of calls and subroutines. As such,
it facilitates the construction of display files in real time, one of
the important advantages of BASIC-11 graphic software.

The following 1is an example of the subpicture structure. Each
subpicture has a call to a subroutine with the return address set to
be the address of the next subpicture. The subroutine called may
either immediately follow the call, or may be a subroutine defined as
part of a subpicture created earlier in the display file. This
permits a subroutine to be used by several subpictures without
duplication of code. Each subpicture has a tag to identify it, and it
is this tag which is returned by the light pen interrupt routine. To
facilitate finding subpictures in the display file, they are made into
a linked list by inserting a forward pointer to the next tag.

SUB1: DJSR ;START OF SUBPICTURE 1
.WORD SUB2 ;NEXT SUBPICTURE
.WORD SUB1+12 ;JUMP TO THIS SUBPICTURE
.WORD 1 ;TAG = 1
.WORD SUB2+6 ; POINTER TO NEXT TAG

;BODY OF SUBPICTURE 1

DRET s RETURN FROM
0 ;SUBPICTURE 1

SUB2: DJSR ; START SUBPICTURE 2
.WORD SUB3 sNEXT SUBPICTURE
.WORD SUB2+12 ;JUMP TO THIS SUBPICTURE
.WORD 2 ;TAG 2
.WORD SUB3+6 ;PTR TO NEXT TAG

A-23

DISPLAY FILE HANDLER

;BODY OF SUBPICTURE 2

DRET ;RETURN FROM
.WORD 0 ;SUBPICTURE 2

SUB3: DJSR ;START SUBPICTURE 3
.WORD SUB4 iNEXT SUBPICTURE
.WORD SUB1+12 ;COPY SUBPICTURE 1

;FOR THIS SUBPICTURE

.WORD 3 ;BUT TAG IT 3.
.WORD SUB4+6 ;PTR TO NEXT TAG

SUB4: DJSR ;START SUBPICTURE 4
. ;ETC.

A.6 SUMMARY OF GRAPHICS MACRO CALLS
Assembly Language
MACRO Call Expansion

Mnemonic Function (see Note 1) (see Note 2)
.BLANK Temporarily blanks .BLANK faddr .GLOBL $VBLNK
a user display file. .IF NB, faddr
MOV faddr, ~100
.ENDC
JSR "07, S$VBLNK
.CLEAR Initializes handler. .CLEAR .GLOBL S$VINIT
JSR 07, SVINIT
- INSRT Inserts a call to . INSRT faddr .GLOBL $VNSRT
user display file .IF NB, faddr
in handler's master MOV faddr, 00
display file. .ENDC
JSR ~07, $VNSRT
« LNKRT Sets up vectors and « LNKRT .GLOBL S$VRTLK
links display file JSR ~07, S$VRTLK
handler to RT-11
scroller.
.LPEN Sets up light pen .LPEN baddr .GLOBL $VLPEN
status buffer. .IF NB, baddr
MOV baddr, ~00
.ENDC
JSR ~07, $VLPEN
.NAME Sets up buffer” to .NAME \baddr .GLOBL $NAME
receive name .IF NB, baddr
register stack MOV .BEDDR, ~00
contents. .endc
JSR "07, $NAME
.NOSYN Disables power 1line .NOSYN .GLOBL $NOSYN

synchronization.

JSR ~07, $NOSYN

DISPLAY FILE HANDLER

Mnemonic

Function

MACRO Call
(see Note 1)

Assembly Language
Expansion
(see Note 2)

. REMOV

.RESTR

.SCROL

«START

.STAT

.STOP

.SYNC

.TRACK

Removes the call to
a user display file.

Unblanks the user
display file.

Adjusts monitor

scroller parameters.

Starts the display.

Sets up status
buffer.

Stops the display.

Enables power line

synchronization.

Enables the track
object.

.REMOV faddr

.RESTR faddr

.SCROL baddr

«START

.STAT baddr

.STOP

«SYNC

.TRACK baddr,
croutine

.GLOBL $VRMOV
.IF NB, faddr
MOV faddr, ~00
.ENDC -
JSR 07, S$VRMOV

.GLOBL $VRSTR
IF NB, faddr
MOV faddr, 00
.ENDC

JSR ~07, $VRSTR

.GLOBL $VSCRL
.IF NB, baddr
MOV baddr, ~00
.ENDC

JSR 07, $VSCRL

.GLOBL $VSTRT
JSR "07, $VSTRT

.GLOBL $VSTPM
.IF NB, baddr
MOV baddr, 00
.ENDC

JSR 07, $VSTPM

.GLOBL $VSTOP
JSR "07, $VSTOP

.GLOBL $SYNC
JSR ~07, $SYNC

.GLOBL S$VTRAK

.IF NB, baddr

MOV baddr, ~00

.ENDC

.IF NB, croutine

MOV croutine, -
(Z06)

.IFF

CLR- (~06)

.ENDC

.NARG T

.IF EQ, T

CLR "00

.ENDC

JSR ~07, $VTRAK

A-25

DISPLAY FILE HANDLER

Mnemonic

Function

MACRO Call
(see Note 1)

Assembly Language
Expansion
(see Note 2)

. UNLNK

Unlinks display

handler from RT-11

if linked (otherwise
leaves display stopped).

.GLOBL $VUNLK
JSR 07, $VUNLK

NOTE 1
baddr Address of data buffer.
faddr Address of start of user
display file.
croutine Address of .TRACK completion
routine.
NOTE 2

The lines preceded by a dot will not be
The code they enclose may or

assembled.

A-26

may not be assembled depending on the
conditionals.
A.7 DISPLAY PROCESSOR MNEMONICS
Mnemonic Value Function

CHAR = 100000 Character Mode
SHORTV = 104000 Short Vector Mode
LONGV = 110000 Long Vector Mode
POINT = 114000 Point Mode
GRAPHX = 120000 Graphplot X Mode
GRAPHY = 124000 Graphplot Y Mode
RELATV = 130000 Relative Point Mode
INTO = 2000 Intensity 0 (Dim)
INT1 = 2200 Intensity 1
INT2 = 2400 Intensity 2
INT3 = 2600 Intensity 3
INT4 = 3000 Intensity 4
INTS = 3200 Intensity 5
INT6 = 3400 Intensity 6
INT7 = 3600 Intensity 7 (Bright)
LPOFF = 100 Light Pen Off
LPON = 140 Light Pen On
BLKOFF = 20 Blink Off
BLKON = 30 Blink On
LINEO = 4 Solid Line

DISPLAY FILE HANDLER

LINEl = 5 Long Dash

LINE2 = 6 Short Dash

LINE3 = 7 Dot Dash

DJMP = 1606000 Display Jump

DNOP = 164000 Display No Operation

STATSA = 170000 Load Status A
Instruction

LPLITE = 200 Light Pen Hit On

LPDARK = 300 Light Pen Hit Off

ITALO = 40 Italics Off

ITALL = 60 Italics On

SYNC = 4 Halt and Resume
Synchronized

STATSB = 174000 Load Status B
Instruction

INCR = 100 Graphplot Increment

(Vector/Point Mode)

INTX = 40000 Intensity Vector or
Point

MAXX = 1777 Maximum X Component

MAXY = 1377 Maximum Y Component

MINUSX = 20000 Negative X Component

MINUSY = 20000 Negative Y Component

(Short Vector Mode)

SHIFTX = 200

MAXSX = 17600 Maximum X Component

MAXSY = 77 Maximum Y Component

MISVX = 20000 Negative X Component

MISVY = 100 Negative Y Component

A.8 ASSEMBLY INSTRUCTIONS

A.8.1 General Instructions
All programs can be assembled in 16K, using RT-11 MACRO. All

assemblies and all 1links should be error free. The following
conventions are assumed:

A-27

DISPLAY FILE HANDLER

1. Default file types are not explicitly typed. These are .MAC
for source files, .OBJ for assembler output, and .SAV for

Linker output.

2. The default device (DK) is used for all files in the
command strings.

3. Listings and link maps are not generated 1in the
command strings.

A.8.2 VTBASE
To assemble VTBASE with RT-11 link-up capability:

MACRO VTBASE

A.8.3 VTCALl1 - VTCAL4
To assemble the modules VTCALl through VTCAL4:

MACRO VTCAL1,VTCAL2,VTCAL3,VTCAL4

A.8.4 VTHDLR

To create the concatenated handler module:

COPY/BINARY VTCAL1.0BJ,VTCAL2.0BJ,VTCAL3.0BJ,~
VICAL4.0BJ,VTBASE.OBJ VTHDLR.OBJ

A.8.5 Building VTLIB.OBJ
To build the VTLIB library:

LIBRARY/CREATE VTLIB VTHDLR

A.9 VTMAC
«TITLE VTMAC
OR COPIED IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE.

COPYRIGHT (C) 1978, DIGITAL EQUIPMENT CORPORATION.

®e “e “e %o e %e %o we

MACRO TO GENERATE A MACRO WITH ZERO ARGUMENTS.

e

A-28

example

example

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY ONLY BE USED

VTMAC IS A LIBRARY OF MACRO CALLS AND MNEMONIC DEFINITIONS WHICH
PROVIDE SUPPORT OF THE VT11 DISPLAY PROCESSOR. THE MACROS PRODUCE
CALLS TO THE VT11 DEVICE SUPPORT PACKAGE, USING GLOBAL REFERENCES.

DISPLAY FILE HANDLER

«MACRO MACO NAME,CALL
«MACRO NAME
«GLOBL CALL
JSR PC,CALL
«ENDM

+ENDM

8 MACRO TO GENERATE A MACRO WITH ONE ARGUMENT
«MACRO MAC1 NAME,CALL

«MACRO NAME ARG
«IF NB,ARG

MOV ARG,%°00
<ENDC

«GLOBL CALL

JSR PC,CALL
+ENDM

+«ENDM
3 MACRO TO GENERATE A MACRO WITH TWO OPTIONAL ARGUMENTS

«MACRO MAC2 NAME,CALL
«MACRO NAME ARG1,ARG2
«GLOBL CALL
«IF NB,ARG1

MOV ARG1,%°00
«ENDC

«IF NB,ARG2

MOV ARG2,=(SP)
«IFF

CLR =(SP)
«NARG T

.IF EOOT

CLR $°00
«ENDC

«ENDC

JSR PC,CALL
+ENDM

<ENDM
3 MACRO LIBRARY FOR VT11:
MACO <.,CLEAR> ,<SVINIT>

MACO <.STOP>,<$VSTOP>
MACO <.START>,<$VSTRT>

MAC1 <.INSRT>,<S$VNSRT>
MAC1 <.REMOV>, <8VRMUV>
MAC1 <.BLANK>,<$VBLNK>

MAC1 <.RESTR>,<$VRSTR>
MAC1 C.STAT>,<SVSTPM>

MAC1 <.LPEN>,<$VLPEN>

MAC1 <.SCROL>,<$VSCRL>
MAC2 <. TRACK>,<$VTRAK>
MACO <oLNKRT>, <$VRTLK>
MACO <.UNLNK>,<$VUNLK>

A-29

DISPLAY FILE HANDLER

? MNEMONIC DEFINITIONS FOR THE VT11 DISPLAY PROCESSOR

DJMP=160000
DNOP=164000
DJSR=173400
DRET=173400
DNAME=173520
DSTAT=173420
DHALT=173500

CHAR=100000
SHORTV=104000
LONGV=110000
POINT=114000
GRAPHX=120000
GRAPHY=124000
RELATV=130000

INT0=2000
INT1=2200
INT2=2400
INT3=2600
INT4=3000
INTS5=3200
INT6=3400
INT7=3600

LPOFF=100
LPON=140
BLKUFF=20
BLKON=30
LINEO=4
LINE1=S
LINE2=6
LINE3=7

STATSA=170000
LPLITE=200
LPDARK=300
ITALO=40
ITAL1=60
SYNC=4

STATSB=174000
INCR=100
INTX=40000
MAXX=1777
MAXY=1377
MINUSX=20000
MINUSY=20000
MAXSX=17600
MAXSY=77
MISVX=20000
MISVY=100

sDISPLAY JUmpP

sDISPLAY NOP

sDISPLAY SUBROUTINE CALL

sDISPLAY SUBROUTINE RETURN

?SET NAME REGISTER

sRETURN STATUS DATA

;STOP DISPLAY AND RETURN STATUS DATA

sCHARACTER MODE
$SHORT VECTOR MODE
:LONG VECTOR MODE
sPOINT MODE

:GRAPH X MODE

3GRAPH Y MODE
?RELATIVE VECTOR MODE

sINTENSITY O

sLIGHT PEN OFF
sLIGHT PEN ON
tBLINK OFF
sBLINK ON
sSOLID LINE
sLONG DASH

s SHORT DASH
+DOT DASH

:LOAD STATUS REG A
sINTENSIFY ON LPEN HIT
:DON'T INTENSIFY

s ITALICS OFF

s1TALICS ON

sPOWER LINE SYNC

s LOAD STATUS REG B

sGRAPH PLOT INCREMENT
sINTENSIFY VECTOR OR POINT
sMAXIMUM X INCR, = LONGV
$MAXIMUM Y INCR. = LONGYV
sNEGATIVE X INCREMENT
sNEGATIVE Y INCREMENT
sMAXIMUM X INCR. = SHORTV
$MAXIMUM Y INCR, = SHORTV
sNEGATIVE X INCR, = SHORTV
¢NEGATIVE Y INCR. = SHORTYV

A-30

DISPLAY FILE HANDLER

A.10 EXAMPLES USING GTON

CXamp g o) MACKO Xd3,4a 18.+aYe)) 14540844 PAGE >
1 JTITLE FaanPLE)
2 i
3 P ThlS exavPLe USES Twe L Pen STaTnS wUFFE® anp THE
4 i ONAVYE KEGISTER Ty wUNIEY & DISPLAY FILE 1Tk TeE LIGHT PEw,
L] i
6 PORAYY Wesro
b4 LI] IT 3] Qrext
[} veneer (14 1%/
L] LLLLTY) JSesda ;Jnn STATUS wURD
1@
11 JMCALL L, TTINR, ExIT, PRINY
12 PYARRe STARTY LNxnT JLINK TQ MONTTOW
1V dvee0s 1010RAe RPL 19 SLINR UP ERPPON?
14 202900 PHINT mEMSL PYES, PRINT mMESSAGE
1S a8p014 JEX[T Jaw) EXIT,
18 200916 191 +SCNOL 8SC3aUF ;anJUST SCNOLL
17 80m92¢ JPOINT mmey
18 ANd03¢ JINIHT sOFILE FINSERT DISPLAY FILE
JLPEN sLRUF iSET UP LPEN BUFFER
252737 402100 PuRpde uls v1vos08)8n FSFT JSw FOR TTINR
w8767 BQ¥wn7¢ LYST: ST LBuF SLYL™T PEN WIT?
20183} BNE 13 iYES
CdTTINR INA, ANY TT INPUT?
103023 (144 Fx11 3YES, EXIT
esnr72 nE LisT iNme LOOP AGALN
R16777 208v74 nRR122 19 (v 12,01P1R 3ReSTORE PREVIOUS CODE
816741 Q9P2%0 mOV LYIB®2, kY GET NAmE VALUE
[LLRTH nge Rt FSHBTRACT ONE
8086301 ASL €1 SMLTIPLY HY TaQ
LIY 213 ADD PC,Nl JUKE 10 IaDEX
n62701 @Q0uv62 ApO 0TS o, ,u1 0fF TAWLE DTAB,
$11167 e@d06¢ oV (R1)sIPTR iMAvE ADOR [N1O IPTR
W16777 Jdevve2 2Q0ed2 “nv T1,0ipTH 3“nDIFY TwaT COOF
34 990134 PUSVEY? dUR016 cLe LALF iCLEan BUFFER FLAG TO
38 GENABLE ANOTWER LP WIT.
36 P%0140 PRA7SO (13 LTST ILADP AGAIN
3y 230142 022720 @Rewi2 ExlTy crP 012,m¢ iLveF FEED?
38 A0Q148 PU1d4S hNE LrSsT iNA, GET ANGTHER
390 Jee18e SUNLN® SUNLINKE FuOM MONTTOR
40 929154 oyt
a1 9083150 Lbuks BLK™ ? iLpkh STATUS BUFFER
42 290174 10337 It o™0RD CraRbINTSALXONILP AN
43 08A176 1A3169 121 owNul CHARIINTAIBLKOFF ILBOUN
44 B90200 VU282’ 309272’ ABRII2' DTaBLE onORD Nleg@end sTAdLE OF OISPLAY FILE
L3 FLACLTIUNS TO BE MODIFIED
46 BV0206 AUR2SQY' 1PTay .~0R0 DY sPotviUys Locatlon #oplslep
47 200219 AYRV02 SCBUFT ,a0nD 2 iSPROLL LINE COUnT
48 2023212 RO10MY oewORN laen 3SexOLL TOP Y POS.
49 AUe214 (T3} 185 122 €861 JASCIZ /ikwmQRy/ iEonNk »pSSAGE
0217 122 117 122
990222 ey LT
L 1] JEVEN
81 Bve224 188 132 10] mSGy LASCIZ /ExamPLE e1/ i1,0. MESSAGE
90227 118 129 114
09n232 199 sev CLR)
[ITFRL] ¥61 409
[L] JEVEM
[FTLLIC T MACRO XJ3,04 18eMAYe?7? 14140164 PaGE 5=
93 '
Se 3 DISPLAY FILE FO¥ gXaMPLE i
LL] i
86 00240 114006 DFILF: PUINT
87 048242 V10V 1
38 ABP244 VARHM See
89 00m246 173520 DNA=E
60 200380 odewV| 1
61 9908282 1v3160 N1y CrAREL%NEE | INT4ILPON
62 000254 117 116 19§ JASCII /ONEW/
020297 ese
63 Jwe26v 114000 POINT
64 2002062 o0Qve10 149
65 PWe264 1000 Jue
66 000266 173529 NNAME
67 288270 W¥d0V2 2
68 290272 143162 net CHARBLANEF | iNT4LPON
69 22274 124 127 117 JASCII /Tmwyey/
"00277 ¥Se
70 84A32J 114020 eCInT
71 #48302 AvalRe 140
72 200334 v¥B1¥ 109
73 JuA306 173520 DNAME
74 J0M310 Q00003 3
78 249312 183160 PEY] CHakBLxNFF | [MT4ILPON
76 290314 124 1@ 122 ASCII /1HREE,/
[LLERF] 108 105 956
77 92322 173409 NRET
78 Y0324 A0AWRR "
79 CLLTTI' N JEND STawl

A-31

Exaup f oy
SYMBOL TaBLE
02 A0p272R
extr LI
INTE s d0200¢
MAXSX g 17620
03 24p3120
MAXSY o AORQT7?
MISVY o BP210P
"8G BU0224R
INTL & B02200
BLXON g 232230
OMALT o 173520
LINED o QAUOQD4
CHAR 5 t10PRRQ
0DTA8L PUe20@R
o ABS, wW¥RV00
PPN326

ERRORY DETECTEDS

DISPLAY FILE HANDLER

MACRO 43,04 18.MAYe77 141491468 PaGE Se2

[1.T')
CL))
[}

VIRTUAL MEMORY USED:
DYNAMIC MEMORY AVAJLABLE FOR

INTX 8 pgnppp TnTa 8 Ag30ce TTell 8 waeme OFILE
INT2 & #QP2400 LPON & Anvide " Tal AR Y1 INT7 8
LINEL 8 ovdun5 “INuSxs P2ugdy IMYS 8 vwns200 MAXY @
DJMP o 1642809 “4INUSYS V2viaoy 12 voclroR SmOnTVsS
LONGY s 110800 POINT 8 11ar0y 1PyR AAs 240k 01
LPDARKS ©Yo0309 E~SG rav2lan BSraT ® 173824 STATSAS
LINE2 » Qubeods ITaL¥ o Dperég SCauf V21 0R STatSBs
INTS s Q02002 T vaal/ ek SY\(3 rrrana SvSCPLs
RELATVs 133200 IVLPENS eseete [1516 3 vesevn GRAPHKS
ORET & 173a¢¢ HLXOFFs A9nady JISw s rPAAced GrAPHYS
LINES s PoROY) NISR e 17349y “Ay: s V417727 SVYNSATe
LBUF [ELRET 1 WVRAILKS eoeeve STast Az ppa LPOFF @
INCR & PORRD DOnavE & 1735d¢ SVONLAS seceee wISvVX 8
LPLITEs Q@020 NDNNP 8 164000

3964 wORDS (14 PAGES)

64 PAGES

MACRO X©3, 04 18.mave?7 16149157 Page >

WLPreVT™AC, MANEXY
Examp g €2

1

2

3

4

L]

L}

’ LI TLT']
[} [T LT}
9 f89006
10 [LLITH]
11

12 dvdere

13 A3R04 19000¢
14 008006

18 d00014¢

16 209016

17 940026

18 200942 wé4r6?
19 84m040
20 B4M2%2
21 A0ARS4e
22 203260 @22700
23 200064 PN1Y73
24 299966 ©Y0207
2% A09070 PBASEQ
26
27

28
29
30
31
32 400374 W1A146
33 ABrere Ale20)
34 29A102 106670}
38 20106 100003
38 P2211v AUSeRy
3y 304112 ¥d2791
3% aea116 us2794
30 A¥RA122 w1a167
40 A¥0126 ©1670)
41 200132 106701
42 9130 10A083
43 AVA140 MOS0y
44 292142 0d27¢)
45 APR146 V1A167
46 24152 P12001
47 A9p184 PUR2Q7
a8

1]
se
81 Anp156 114000
82 413160 AYRSAV
853 Ave162 wAvASeR
S84 AOA164 113000
5% AAR166 WNReew
56 P2A170 PYALAY
57 294172 1734P0

Q00012

177766
a0m082

LYLI'TL)
Qev000
[LI IT
177740
990024

02092y
"pe916

eTITLE exavkLe @2

THIS EXAMPLE USES IME TRaCkIs® JadECT a5 THE TracK
COMPLETION ADUTINE TN CAUSE & VEpTOR 10 KQLLOw
TE LIGHT PeN FQOw & SET POIAT a1 (S%409¢¢),

. e ve v v

Qsete
“rexd
SPey6
pCedy
eMCALL JFXI1, TTYIN,, ,PHINY
STARTY o nNkAT JLYum TGO v (N]ICR

APL 13 JLY X UP ECRNR?
CPRINT sEMSL JYESe INFOPM yUSER
SEXIT iAND EX]T

183 «INSKT #)F L s TNSENT O1SPLAY FLE

oFRACK S1AUF,8TCY sDYSPLAY TRaCn OBJECT
JSR PCoab]T iWall FOW <CR>
JINLNK JUGLINK Bu(™ wONITOR
JEXTT *

wAlTY JITYIN SGFY CHAR, FuOw TTY
[812,40 SLINE FEEDT?
HNE walt inNm, GET AnITwHERQ
RTS PC

TBUF? +wORD 599,542 3ToaCn =UFFER INITED T0
3STAMT TRACK AT (9v¥,d¥V)
i

i TRACK COMPLETINN <UUTINE ENTERED Al [NTERWUPT LgpvEL

3 FROM DISPLAY FILE MANGLEP »ITh DrSPLAY STNPPRD,

J USED TO UPNATE OIS™LAY FILE wITW UATA FuCH TRUF.

3

Tcome "oV R1,=3p) iSHvE Wy
oV TRUF k| INEe X
uh Ng, ki PINFs X2 e WL X
APL 13 iPASITIVE DIFFERENCE?
NEG o1 ine 80 mMamg POSITIVE
RIS SMINUSX IR sonl SET «IwNus ®IT

131 RIS SINTR, Ky 6 S0 SET INTENSIFY B1T
“ov R1,0A FTweN STOWE I~ OFILE,
MoV THUF*2,K IR
SUR ny,wl INFa Y e (D Y
AP 23 IPASITIVE OIFFERENCE?
NEG LA iNp, 80 MAKE PUSTTIVE
318 s“TNUSY, Ry iANC SET “INUS BIT

2% “v R1,07 iTwen STO~E T~ DFILE
OV (§P)+,R1 i"gSINRE w1
ars 14 ibylT FRna ComPLETION ROUTINE

'

"5 DISPLAY FILE FOR EramPLe a2

}

DFILEs POIWT $e1 PNt v

oxg Sue

Ovg LY.L P&, %)
LONGV I InNTE iNPa~ 4 vp(TN

Y] onOnl k) STUTTIALLY NOwmpke

nvy cnQih L
wET SSTSPLAY BF END

A-32

eov24ach
vodoYe
w1377
1040nd
LLLrEr{]
176494
174000
LXEXXX]
12vevv
12644098
(XXX Y]
veblve
[XLTTT)

3

4

DISPLAY FILE HANDLER

"
JASCIZ /SUMMY, THERE SefHe Tu BE & PRUBLE™/

+END

PaGE

LARY R

Se2

LPLITks ©942¢9

wAl? WAV O 4R
$'TRAKS eeeete
INT4 o Pd)aY¢
LPON 8 WrAléx

MINUSKe V294v¢

MINUSYS n2uevd
POINT s 1144¢0

EmSG

Aav1/6R

1TALY & ¢¥¥N04¥
BLKOFFs Noveln

LREL]

s 173409

ExAnpLF €2 WACKO Xo3,va 18.mMaYe?7 14149157 PARE de)
88 osvey?¢ eneond
80 40176 123 117 122 EMSGy
90201} 122 131 1Y)
00204 (XT] 124 112
e 108 122 105
Me12 040 129 105
00218 108 115 123
0220 veo 124 117
aerdy (1] 102 198
"00220 wee 101 [ZT]
120 122 117
192 114 1909
118 LLT]
«EVEN
(LT
CxanpLe 82 MACRO X@3,04 18.maYe?? 14349857
SYMpOL Taslg
INTY o 202000 LONGY = 110000
NAXSX o P17600 LPOARKS POO030¢
MAKGY o 124 LINE2 o 200006
nIsvY o L Ox [LIS 1]
INTL o PU2200 INTS o 9020600
BLXON o 9003 RELATVE 1308000
OMALYT o 173500 Tcom [T LITYL]
LINES o 00 DRET « 173400
CHAR ¢ 10 ['J LINES o 00OWY?
INTX o R4DO0O ov 00d170n
INT2 o Teus 008070k
LINEY o INCR o Q00102
[XL L]
o 408, OUPedR [1T]
000242 [L}
CRRORS OETECTEDS O
VIRTUAL MEMORY USED! 3717 wOKDS (15 PAGES)
DYNaNge MEWORY AVAILABLE FOR 64 PAGES

oLPoBVIMAC, MANEXD

A-33

Svollns
ONAME =
DnnP s
1TaLl s
INTD 0
DSyal »
SvyuC s
Into 8
MAynR 1 3
0x
STaRrY
0y

tevt e
173%20
1od4d¢o
[ELTrY Y]
vn322¢
173420

vorvade
“n3edn
6n1777
AAA 1 60R
AervloR
wangeeR

SVUNLKS
DEILE

INT? 8
MAXY -
SMORTvVa
STATSAs

STATSps
GHAPHAS®
GRAPRYS
SVNSRTS
LPOFt s
MISVX w

LA AR 2] G
[LLRS-1-1]
vcdodv
vold77
10avd
1706000

174000
12bovo
124099
(XA XX 2] (.
[ELRYL
v20voYY

APPENDIX B

SYSTEM MACRO LIBRARY

The following is a listing of the system macro 1library (SYSMAC.SML)
for the RT-11 V03B release. This library is stored on the system
device and is used by MACRO when it expands the programmed requests
discussed in Chapter 2.

SYSMAC .MAC==SYSTEM MACRO LIBRARY
RT=11 VERSION 3B

COPYRIGHT (C) 1977, 19178
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. 01754

!
!
)
}
’
!
H
$} THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY ON A

? SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH THE INCLUSION
3 OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE, OR ANY OTHER

3 COPIES THEREOF, MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE
¢ TO ANY OTHER PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO
3 AGREES TO THESE LICENSE TERMS. TITLE TO AND OWNERSHIP OF THE
$} SOFTWARE SHALL AT ALL TIMES REMAIN IN DEC,
!
!
H
H
'
H
'

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT
NOTICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL
EQUIPMENT CORPORATION.

DEC ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DEC.

+MACRO ,.V1..

.HCILL ...c"o’...c"t'...c”z'...C”3'...C""...C"S'...CM6
OQOVIgi

+«ENDM

«MACRO ..V2..

."CALL oo.CMO;oooC"l;.o.CH2,...CM3a...CH4'..oCMS'oo-C"6
...v"z.

«ENDM

+MACRO MACS

."CALL ..OCEO' ...C"l' '..c"z' ...c”a'...CM"...CMS"..CMé
eeeV123,

<ENDM

SYSTEM MACRO LIBRARY

+MACRO ,,.CMO STARG
«IF B <STARG>

CLR =-(6,)
«IFF
«IF IDN <STARG>,#0
CLR =(6,)
«IFF
MOV STARG,=(6.)
+ENDC
«ENDC
«ENDM

+«MACRO ,,.CM1 AREA, IC,CHAN,FLAG
eesCMS <AREA>
eeeV2m0
«IF B <FLAG>
«IIF B <AREA>, ...V2=1
«IFF
+1IF DIF <FLAG>,SET, ...V2=1
+ENDC
«IF NE ...V2
«IF IDN <CHAN>,<#0>
CLRB (0)
«IFF
«IF NB <CHAN>
MOVB CHAN, (0)
+ENDC
+ENDC
«IFF
«IF B <CHAN>
MOVB #$1C,1(0)
« IFF
«NTYPE ...V2,CHAN
. IF EQ) .V2"‘027

MoV CHAN+<IC*~0400>,(0)
«IFF
MoV #1C*~0400,(0)
MOVB CHAN, (0)
«ENDC
«ENDC
«ENDC
+ENDM

«MACRO ,,.CM2 ARG,OFFSE, INS,CSET,BB
«IF B <ARG>
«IF NB <CSET>
«IF NE ...Vi=3,
CLR’BB OFFSE(0)
<ENDC
«ENDC
«IFF
«IF IDN <ARG>,$0
CLR’BB OFFSE(0)

«IFF
MOV’BB ARG,OFFSE(0)
«ENDC
+«ENDC
«IF NB <INS>
EMT 0375
«ENDC
«ENDM

«MACRO ,...CM3 CHAN, IC
«IF B <CHAN>
MOV $1C*~0400,%0

SYSTEM MACRO LIBRARY

«1FF
+NTYPE ...V2,CHAN
olr EQ X) .V2-“027
MOV CHAN+<IC*°0400>,%0
«IFF
MOV $1C*~0400,%0
BISB CHAN, %O
+ENDC
+ENDC
EMT “0374
+ENDM
+MACRO ,...CM4 AREA,CHAN,BUF ,WCNT ,BLK,CRTN, IC,CODE
eesCM1 <AREA>,<IC>,<CHAN>,<CODE>
eesCM2 <BLK>,2.
eeeCM2 <BUF>,4.
eeeCM2 <WCNT>,6.
eeeCM2 <CRTN>,8.,X
+ENDM
+MACRO ,..CM5 SRC,BB
+IF NB <SRC>
«IF DIF <SRC>,R0
MOV’BB SRC,%0
<ENDC
+ENDC
+ENDM
«MACRO ..,.CM6 AREA,IC,CHAN,FLAG
eesCMS <AREA>
+IF B <FLAG>
«IF NB <AREA>
MOV $1C*~0400+CHAN, (0)
+ENDC
+«IFF
«IF IDN <FLAG>,SET
MOV $1C*~0400+CHAN, (0)
+ENDC
«ENDC
+ENDM
«MACRO .CDFN AREA ,ADDR,NUM,CODE
«1F NDF ...Vl
«MCALL .MACS
+MACS
+ENDC
eeosCM6 <AREA>,13.,0,<CODE>
«esCM2 <ADDR>,2,
eeeCM2 <NUM>,4,.,X
+ENDM
«MACRO .CHAIN
MOV $8,%°0400,%0
EMT ~0374
+ENDM
«MACRO .CHCOP AREA,CHAN,OCHAN,CODE
«IF NDF ...Vl
+MCALL .MACS
+MACS
+ENDC
eeeCM1 <AREA>,11.,<CHAN>,<CODE>
essCM2 <OCHAN>,2.,X
«ENDM

SYSTEM MACRO LIBRARY

«MACRO ,.CLOSE CHAN
«IF NDF ,..Vi
«MCALL .MACS
«MACS
+«ENDC
«IF EQ eeeVieml
EMT “0<160+CHAN>
«IFF
eesCM3 <CHAN>,6,
«ENDC
+ENDM

«MACRO .CNTXS AREA,ADDR,CODE
«IF NDF ,..V1

+MCALL .MACS

«MACS

«ENDC

++.CM6 <AREA>»,27,,0,<CODE>
+»+eCM2 <ADDR>,2,,X

«ENDM

«MACRO .CMKT AREA, 1D, TIME,CODE
«IF NDF ,..V1

+MCALL ,MACS

«MACS

«ENDC

+¢+CM6 <AREA>,19,.,0,<CODE>
«esCM2 <ID>,2.

eeosCM2 <TIME>,4.,X,X

«ENDM

+MACRO .CRAW AREA,ADDR,CODE
«IF NDF ,...Vi

«MCALL .MACS

«MACS

«ENDC

e+.CM6 <AREA>,30.,2.,<CODE>
eeeCM2 <ADDR>,2,,X

+«ENDM

«MACRO .CRRG AREA,ADDR,CODE
oIF NDF ,..V1

+MCALL .MACS

«MACS

«ENDC

+++CM6 <AREA>,30,,0,<CODE>
eesCM2 <ADDR>,2.,X

«ENDM

+MACRO .CSIGE DEVSPC,DEFEXT,CSTRNG,LINBUF
«IF NDF ...V1

«MCALL .MACS

«MACS

+ENDC

«IF NB <LINBUF>

eesCMO <LINBUF>

«NTYPE ,..V2,DEVSPC

«IF EQ .+.V2=7027

eeeCMO <DEVSPC’+¢1>

«IFF
«esCMO <DEVSPC>
INC (6.)
«ENDC
«IFF

SYSTEM MACRO LIBRARY

eesCMO <DEVSPC>
<ENDC
eeoeCMO <DEFEXT>
eeeCMO <CSTRNG>

EMT 0344
+ENDM

«MACRO .CSISP OUTSPC,DEFEXT,CSTRNG,LINBUF
«IF NDF ...Vl

«MCALL .MACS

«MACS

+ENDC

«IF NB <LINBUF>

eesCMO <LINBUF>

+NTYPE ...V2,0UTSPC

«IF EQ ...V2="027

eeosCMO <OUTSPC’+1>

«IFF
«esCMO <OUTSPC>

INC (6.)
+ENDC
«IFF
eesCMO <OUTSPC>
«ENDC

eesCMO <DEFEXT>
eeosCMO <CSTRNG>

EMT 0345
+ENDM

«MACRO .CSTAT AREA,CHAN,ADDR,CODE
«1F NDF ...V1

«MCALL .MACS

«MACS

+ENDC

eeeCM1 <AREA>,23,,<CHAN>,<CODE>
«esCM2 <ADDR>,2,,X

+«ENDM

«MACRO ,CTIMI TBK
JSR $5,8STIMIT
«WORD TBK=-.
+«WORD 1

+«ENDM

«MACRO .DATE
MOV #10,%°0400,%0
EMT “0374

+MACRO .DELET AREA,CHAN,DBLK,SEQNUM,CODE
+IF NDF ,..V1
+MCALL .MACS
+MACS
«ENDC
«IF EQ eseViel
eoeCMS <CHAN>
EMT “0<AREA>
+IFF
eeoeCM5 <AREA>
«IF IDN <CHAN>,#$0
CLR (0)
+«IFF
veeV280
.IF B <CODE>

SYSTEM MACRO LIBRARY

«IIF B <AREA>, .,.V2=}
«IFF
«1IF DIF <CODE>,SET, ...V2=1
+ENDC
«IF NE ,,..V2
«IF NB <CHAN>
MOVB CHAN, (0)

«ENDC
« IFF
o1F B <CHAN>
CLRB 1(0)
o IFF

«NTYPE ,..V2,CHAN
«IF EQ ...V2="027

MOV CHAN, (0)
« IFF

CLR (0)

MOVB CHAN, (0)
«ENDC
«ENDC
+ENDC
«ENDC

«eoCM2 <DBLK>,2,
eeeCM2 <SEQNUM>,4.,X,X
+ENDC

«ENDM

+MACRO .DEVIC AREA, ADDR,LINK,CODE
«IF NDF ,..V1

«MCALL .MACS

«MACS

«ENDC

«IF B LINK

eeoCM6 <AREA>,12.,0,<CODE>
«IFF

eeosCM6 <AREA>,12,.,1,<CODE>
+ENDC

«+sCM2 <ADDR>,2,,X

+ENDM

+MACRO .DRAST NAME,PRI,ABT
«GLOBL SINPTR
+IIF B <ABT> RTS z7
«IIF NB <ABT> BR ABT
NAME’INT:: JSR 85,@8INPTR

«WORD “C<PRI*~040>&~0340
«ENDM

+MACRO .DRBEG NAME,VEC,DS1Z,DSTS,VTBL
«IF NDF $SYSDV
«ASECT
« =52
«GLOBL NAME'’END
«WORD <NAME‘END = NAME'STRT>
«WORD DSIZ
«WORD DSTS

$SYDSZ == DSI1Z
«PSECT SYSHND
+ENDC
NAME’STRT: S
.IF B VIBL

SYSTEM MACRO LIBRARY

«GLOBL NAME’INT
.WORD VEC
.WORD NAME'’INT - .
.IFF
.GLOBL VTBL,NAME’INT
.WORD <VTBL=.>/2. =1 + ~“0100000
.WORD NAME'INT - ., -
.ENDC
.WORD ~0340
NAME’SYS::
NAME’LQE:: .WORD 0
NAME’CQE:: .WORD O
.ENDM

«MACRO .DREND NAME

eoeV220

«IF NE MMGST

...vz-...vz’z.

«IF DF $SYSDV

«GLOBL SRELOC,$MPPHY,$SGETBYT, $PUTBYT, $PUTWRD
SRLPTR:: ,WORD S$RELOC

S$MPPTR:: .WORD §SMPPHY

$GTBYT:: .WORD SGETBYT

$PTBYT:: .WORD SPUTBYT

S$PTWRD:: .WORD S$SPUTWRD

+«IFF

S$RLPTR:: WORD
S$MPPTR:: .WORD
$GTBYT:: .WORD
$PTBYT:: .WORD
$PTWRD:: .WORD
+ENDC

+ENDC

«IF NE ERLSG
eoeV2E,,,V2¢+1
«IF DF 8SYSDV
+GLOBL S$ERLOG
SELPTR:: ,WORD S$ERLOG

«IFF

SELPTR:: ,WORD O

+ENDC

+ENDC

«IF NE TIMSIT

eoeV2B,,,V2¢4,

«IF DF 8SYSDV

+GLOBL S$TIMIO

$TIMIT:: .WORD STIMIO

«IFF

$TIMIT:: .WORD O

+ENDC

+ENDC

«IF DF 8$SYSDV

+GLOBL SFORK,SINTEN

S$INPTR:: ,WORD SINTEN
$FKPTR:: .WORD §$FORK

+«IFF

S$INPTR:: WORD O

$FKPTR:: .WORD O

+IFTF

+GLOBL NAME‘STRT

NAME’END == ,

+IFT

$SYHSZ =z NAME'END = NAME'’STRT
+IFF

[~NeN-N-Na)

SYSTEM MACRO LIBRARY

+ASECT
«%60
+«WORD eeeV2
«PSECT
«ENDC
«ENDM

+MACRO .DRFIN NAME
«GLOBL NAME'CQE

MOV $7,%4

ADD #NAME ‘CQE~, , %4
MOV @#°054,%5

JMP @%0270(5)

«ENDM

+«MACRO ,DSTAT RETSPC,DNAM
«IF NDF ,,,V1
«MCALL ,MACS
«MACS
«ENDC
eesCM5 <DNAM>
eesCMO <RETSPC>
EMT “0342
+«ENDM

+MACRO .ELAW AREA,ADDR,CODE
«IF NDF ,..V1

«MCALL .MACS

«MACS

«ENDC

.O.C"Q <AREA>'3°.'3. '<CODE>
eeeCM2 <ADDR>,2,,X

+ENDM

«MACRO .ELRG AREA, ADDR,CODE
«IF NDF ,,..V1

«MCALL .MACS

«MACS

«ENDC

eeosCM6 <AREA>,30.,1,<CODE>
eeeCM2 <ADDR>,2,,X

«ENDM

«MACRO .ENTER AREA,CHAN,DBLK,LEN, SEQNUM,CODE
«1IF NDF ...V1
«MCALL .MACS
+MACS
+ENDC
«IF EQ ...Vl"l
eeeCMS <CHAN>
«eeCMO <DBLK>
EMT “0<40+AREA>
«IFF
+eeCM1 <AREA>,2,,<CHAN>,<CODE>
«esCM2 <DBLK>,2,
eoeCM2 <LEN>,4.,,X
eeeCM2 <SEQNUM>,6,.,X,X
«ENDC
+ENDM

+«MACRO .EXIT
EMT 0350
«ENDM

«MACRO .FETCH
+«IF NDF ,,.V1

«MCALL .MACS

«MACS

«ENDC

eesCMS <DNAM>

ee+sCMO <ADDR>
EMT

+ENDM

«MACRO .FORK
JSR
«WORD

«ENDM

«MACRO .GMCX

«1F NDF ,,.V1

«MCALL .MACS

+«MACS

+ENDC

SYSTEM MACRO LIBRARY

ADDR,DNAM

0343

FKBLK
$5,@$FKPTR
FKBLK = .

AREA,ADDR,CODE

eeeCM6 <AREA>,30,,6.,<CODE>
eesCM2 <ADDR>,2,.,X

AREA,ADDR,CODE

<AREA>,17.,0,<CODE>

«ENDM

+«MACRO .GTIM

.Il' NDF ooon
«MCALL .MACS

+MACS

+ENDC

...CH6

eeeCM2 <ADDR>,2,,X
+ENDM

+MACRO ,GTJB

«IF NDF ,..V1

AREA,ADDR,CODE

<AREA>,16,,0,<CODE>

LINBUF,PROMPT

=(6.)
~0345

AREA,OFFSE,CODE

«MCALL .MACS
+MACS
+ENDC
LN] .Cus
Otocuz <ADDR>'2. 'x
+ENDM
«MACRO .GTLIN
«IF NDF ...Vl
+MCALL .MACS
+MACS
«ENDC
eeesCMO <LINBUF>
eesCMO 81
o0 oCMO <PROMPT>
CLR
EMT
+ENDM
+«MACRO .GVAL
«IF NDF ,..V1
«MCALL .MACS
+MACS
«ENDC

eeoCM6 <AREA>,28,,0,<CODE>

oo oCM2
+ENDM

<OFFSE>,2,,X

«MACRO ,HERR

MOV

EMT
«ENDM
«MACRO .HRESE

EMT
«ENDM
«MACRO ,INTEN
.IF B PIC

JSR
+IFF

MOV

JSR
+ENDC

+«WORD
+ENDM

+«MACRO ,LOCK
EMT
«ENDM

+MACRO ,LOOKU
«IF NDF ,..Vi1
«MCALL .MACS
«MACS

«ENDC

«IF EQ ,,.Vi=l
eeosCM5 <CHAN>

EMT

«IFF

SYSTEM MACRO LIBRARY

#5.%°0400,%0
“0374

0357

PRIO,PIC
5.,8%054

@#°054,~-(6.)
S.,8(6.)+

“C<PRIO*32,>5224,

0346

AREA,CHAN,DBLK, SEQNUM,CODE

“0<20+AREA>

++«CM1 <AREA>,1,<CHAN>,<CODE>
eesCM2 <DBLK>,2,
+eoCM2 <SEQNUM>,4.,X,X

«ENDC
«ENDM

«MACRO ,MAP
«IF NDF ...V1
+MCALL ,MACS
«MACS

«ENDC

AREA,ADDR,CODE

++oCM6 <AREA>,30.,4.,<CODE>
«esCM2 <ADDR>,2,,X

+«ENDM

«MACRO ,MTATC
«IF NDF ,,.V1
«MCALL .MACS
«MACS
«ENDC

AREA,ADDR,UNIT,CODE

«+sCM6 <AREA>,31.,5.,<CODE>
«esCM2 <ADDR>,2,
...CM2 <UNIT>:‘.9X,;B

«ENDM

+MACRO MTDTC
«IF NDF ,...V1
+MCALL .MACS
«MACS
«ENDC

AREA,UNIT,CODE

+esCM6 <AREA>,31,.,6,,<CODE>
soeCM2 <UNIT>,4.,X

+ENDM

B-10

SYSTEM MACRO LIBRARY

«MACRO .MTPRN AREA,ADDR,UNIT,CODE
«IF NDF ...Vl

«MCALL .MACS

«MACS

«ENDC

eeeCM6 AREA,31.,7.,<CODE>

eesCM2 ADDR, 2.

eeoCM2 <UNIT>,4.,X,,B

+ENDM
+MACRO .MFPS ADDR
MOV e4°054,=(6.)
ADD #°0362,(6.)
JSR Te)8(6.)+
«IIF NB <ADDR> MOVB (6.)+,ADDR

«MACRO ,MTRCT AREA,UNIT,CODE
«IF NDF ,,..V1

+MCALL .MACS

«MACS

«ENDC

ee+CM6 <AREA>,31.,4,,<CODE>
eeoCM2 <UNIT>,4.,X

+ENDM

«MACRO .MRKT AREA, TIME,CRTN,ID,CODE
«IF NDF ,,.V1

+MCALL .MACS

«MACS

«ENDC

eesCM6 <AREA>,18,,0,<CODE>

«esCM2 <TIME>,2,

eesCM2 <CRTN>,4.

eoosCM2 <ID>,6.,X

«ENDM

«MACRO ,MTGET AREA,ADDR,UNIT,CODE
«IF NDF ...V}

«MCALL .MACS

+MACS

<ENDC

eeeCM6 AREA,31.,1,<CODE>

«esCM2 ADDR,2.

..Ocnz (UNIT),‘.,X,,B

+«ENDM
«MACRO ,MTPS ADDR
«IIF NB <ADDR> C(CLR =(6.)
«1IF NB <ADDR> MOVB ADDR, (6.)
MOV @#°054,=(6.)
ADD $°0360,(6.)
JSR 1.,8(6.)+
«ENDM

«MACRO ,MTSET AREA ,ADDR,UNIT,CODE
«IF NDF ,,..V1

«MCALL .MACS

«MACS

«ENDC

eesCM6 AREA,31.,0,<CODE>

«esCM2 ADDR,2.

eeeCM2 <UNIT>,4.,X,,B

«ENDM

B-11

SYSTEM MACRO LIBRARY

+«MACRO . MTIN AREA,ADDR,UNIT,CHRCNT,CODE
«IF NDF ...Vl

«MCALL .MACS

+MACS

«ENDC

eesCM6 AREA,31,.,2,,<CODE>

+0eCM2 ADDR,2,

oeesCM2 <UNIT>,4..”B

eeeCM2 <CHRCNT>,5,.,X,,B

+ENDM

«MACRO .MTOUT AREA ,ADDR,UNIT,CHRCNT,CODE
«IF NDF ...Vl

«MCALL .MACS

«MACS

«ENDC

eeeCM6 AREA,31.,3,,<CODE>

«eeCM2 ADDR,2,

eeeCM2 <UNIT>,4.,,,B

essCM2 <CHRCNT>,S5.,X,,B

«ENDM

+MACRO MWAIT
MOV $9,.%°0400,%0
EMT ~0374

«ENDM

«MACRO .PRINT ADDR
«IF NB <ADDR>
«IF DIF <ADDR>,R0O

MOV ADDR, %0
«ENDC
«ENDC

EMT ~0351
«ENDM

+MACRO .PROTE AREA,ADDR,CODE
«IF NDF ,..V1

+«MCALL .MACS

+MACS

«ENDC

eeoesCM6 <AREA>»,25,.,0,<CODE>
eeoCM2 <ADDR>,2,.,X

<ENDM

+«MACRO .PURGE CHAN
«IF NDF ...Vl

+MCALL ,MACS

+«MACS

«ENDC

eesCM3 <CHAN>,3.
+ENDM

+MACRO .QELDF
Q.LINK=0
Q.CSwW=2,
QOBLKN“.
Q.FUNC:6.
Q.JNUM=T,
Q.UNIT=7,
Q.BUFF=~010
Q.WCNT="012
Q.COMP="014
+IF EO MMGST

B-12

Q.ELGH="016

«IFF

Q.PARZ"016
Q.ELGH="024

«ENDC
+ENDM

«MACRO

«QSET

«IF NDF ,..V1

«MCALL
+MACS
+ENDC
LN) .cus
L) .c"o
«ENDM
+MACRO
+ENDM

+«MACRO

«MACS

<LEN>,B
<ADDR>
EMT

«RCTRL
EMT

«RCVD

«IF NDF ,,.V1
+«MCALL .MACS

+MACS
«ENDC

«1IF IDN <CODE>,NOSET,
«1IF DIF <CODE>,NOSET,

«ENDM

+«MACRO

«RCVDC

«IF NDF ...Vl

+MCALL
+MACS
«ENDC

«1IF IDN <CODE>,NOSET,
«1IF DIF <CODE>,NOSET,

+ENDM
+«MACRO

«MACS

«RCVDW

«IF NDF ,,.V1

+MCALL
«MACS
«ENDC

«IIF IDN <CODE>,NOSET,
+1IF DIF <CODE>,NOSET,

+ENDM

+«MACRO
«MCALL
«RDBDF

«ENDM

+«MACRO
R.GID
R.GSIZ
R.GSTS
R.GLGH
RS8.CRR
RS .UNM
RS, NAL
+ENDM

«MACS

«RDBBK
«RDBDF

+«WORD
+«WORD
«WORD

+«RDBDF

=0

2,

=4,

26,
2010000
=~040000
2020000

SYSTEM MACRO LIBRARY

ADDR,LEN

“01353

0355

AREA ,BUF ,WCNT,CRTN=$1,CODE

AREA,BUF ,WCNT,CRTN,CODE

AREA ,BUF ,WCNT ,CRTN=#0,CODE

RGSIZ

RGSIZ

0

B-13

eeeCM4 <AREA>, ,<BUF>,<WCNT>, ,<CRTN>,22.,<CODE>
eeeCM4 <AREA>,#0,<BUF>,<WCNT>, ,<CRTN>,22,,<CODE>

eeeCM4 <AREA>,#0,<BUF>,<WCNT>,,<CRTN>,22,,<CODE>

«ssCM4& <AREA>, ,<BUF>,<WCNT>, ,<CRTN>,22,,<CODE>
eeoeCM4 CAREA>,#0,<BUF>,<WCNT>, ,<CRTN>,22,,<CODE>

SYSTEN MACRO LIBRARY

«MACRO ,READ AREA,CHAN,BUF ,WCNT ,BLK,CRTN=#1,CODE
«IF NDF ,,.Vi1

«MCALL .MACS
«MACS
«ENDC
«IF EQ eseVi=1
eesCMS <CWCNT>
eesCMO 81
vesCMO <BUF>
eesCMO <CHAN>
EMT “0<200+AREA>
«IFF
.6.524 <AREA>,<CHAN>,<BUF>,<UCNT>,<BLK>.<CRTN>,O..(CODE)
«EN
+«ENDM

+MACRO .READC AREA ,CHAN,BUF ,WCNT,CRTN,BLK,CODE
«IF NDF .,..V1
«MCALL .MACS
+MACS
+ENDC
«IF EQ eeeVi=l
eesCMS <CRTN>
essCMO <WCNT>
eesCMO <BUF>
seoCMO <CHAN>
EMT “0<200+AREA>
«IFF
eeosCM4 <AREA>,<CHAN>,<BUF>,<WCNT>,<BLK>,<CRTN>,8,,<CODE>
+ENDC
+ENDM

+«MACRO .READW AREA,CHAN ,BUF ,WCNT ,BLK,CRTN=%0,CODE
«IF NDF ...Vl
+MCALL .MACS
+MACS
+ENDC
«IF EQ eeoeVi=l
eeeCMS <WCNT>
eeosCMO
eeoCMO <BUF>
eeeCMO <CHAN>
EMT “0<200+AREA>
+«IFF
eoeCM4 <AREA>,<CHAN>,<BUF>,<WCNT>,<BLK>,<CRTN>,8,,<CODE>
«ENDC
«ENDM

+«MACRO ,REGDEF
«ENDM

«MACRO .RELEA DNAM
«IF NDF ,..V1
+MCALL .MACS

«MACS
+ENDC
eesCMS <DNAM>
eesCMO
EMT “0343
<ENDM

«MACRO .RENAM AREA,CHAN,DBLK,CODE
«IF NDF ,.,,V1
+«MCALL .MACS

B-14

«MACS
+ENDC
«IF EQ
eesCMS

«IFF
e .c"1
o0 .cuz
+ENDC
+ENDM

+MACRO

SYSTEM MACRO LIBRARY

seeViel
<CHAN>
ENT “0<100+AREA>

<AREA>, 4., <CHAN>,<CODE>
<DBLK>,2,.,X

+«REOPE AREA,CHAN,CBLK,CODE

«IF NDF ,..V1

«MCALL
+MACS
«ENDC
«IF EQ
L] .c"s

+oIFF
eeoCMI
eeoCM2
«ENDC
«ENDM

+«MACRO

«MACS

eeeVli=}
<CHAN>
ENT “0<140+AREA>

<AREA>,6,,<CHAN>, <CODE>
<CBLK>,2,,X

+SAVES AREA,CHAN,CBLK,CODE

«IF NDF ,.,.V!

+MCALL
«MACS
«ENDC
«IF EQ
L] .c"s

«IFF
o0 .cul
e eoCM2
«ENDC
«ENDM

«MACRO

+ENDM
«MACRO

+MACS

eeeVli=l
<CHAN>
EMT “0<120+AREA>

<AREA>,5,,<CHAN>,<CODE>
<CBLK>,2,,X

«RSUM
MOV $2.%°0400,%0
EMT “0374

«SDAT AREA,BUF ,WCNT,CRTN=#1,CODE

«IF NDF ...Vl

+«MCALL
«MACS
«ENDC

«IIF IDN <CODE>,NOSET,
«1IF DIF <CODE>,NOSET,

+«ENDM

«MACRO

«MACS

«SDATC AREA ,BUF ,WCNT,CRTN,CODE

«IF NDF ...V

«MCALL
+MACS
+ENDC

«1IF IDN <CODE>,NOSET, ...CM4 <AREA>,,<BUF>,<WCNT>,,<CRTN>,21.,<CODE>

«IIF DIF <CODE>,NOSET, ...CM4 <AREA>,$0,<BUF>,<WCNT>,,<CRTN>,21.,<CODE>

+ENDM
«MACRO

«MACS

«SDATW AREA,BUF ,WCNT,CRTN=80,CODE

«IF NDF ,.,..V1

+«MCALL

«MACS

B-15

eeoCM4 <AREA>,,<BUF>,<WCNT>,,<CRTN>,21.,<CODE>
eeoCM4 <AREA>,$0,<BUF>,<WCNT>, ,<CRTN>,21,,<CODE>

SYSTEM MACRO LIBRARY

+MACS
«ENDC
«1IF IDN <CODE>,NOSET, ...CM4 <AREA>, ,<BUF>,<WCNT>, ,<CRTN>, 21, ,<CODE>

.é:;sblr <CODE>,NOSET, ...CM4 <AREA>, #0,<BUF>,<WCNT>, ,<CRTN>,21,,<CODE>

+«MACRO ,SERR
MOV $4,%°0400,%0
ENMT 0374

«ENDM

«MACRO .SETTO ADDR
«IF NDF ,,..V1
+MCALL .MACS

«MACS
+ENDC
eeeCMS <ADDR>
ENT “0354
+«ENDM

«MACRO ,SCCA AREA,ADDR,CODE
«IF NDF ,,.V1

«MCALL ,MACS

+«MACS

+ENDC

eesCM6 <AREA>,29,,0,<CODE>
eesCM2 <ADDR>,2,,X

«ENDM

«MACRO ,SFPA AREA,ADDR,CODE
«IF NDF ,.,.V1

+MCALL .MACS

«MACS

+ENDC

eeeCM6 <AREA>,24,,0,<CODE>
eeeCM2 <ADDR>,2,,X

+«ENDM

+«MACRO ,SPFUN AREA,CHAN,FUNC ,BUF ,WCNT,BLK,CRTN,CODE
«IF NDF ,..V1

«MCALL .MACS

«MACS

+ENDC

eesCM1 <AREA>,26,,<CHAN>,<CODE>

eeoCM2 <BLK)'20

eesCM2 <BUF>,4,

eeeCM2 <HWCNT>,6,

+IF NB FUNC

+NTYPE ...V2,FUNC

«IF NE ,,.V2=027

+11F DIF <CODE>,NOSET,...CM2 #40377,8.,,,B
u.CH2 <FUNC>,9..,,B

«IFF

eesCM2 <FUNC’*~0400+°0377>,8,

+«ENDC

+ENDC

eeoeCM2 <CRTN>,10,,X,X

«ENDM

+MACRO ,SRESE

EMT 0352
«ENDM

B-16

«MACRO .SPND

MOV
EMT

+«ENDM

+«MACRO ,SYNCH

«IF B PIC

«IIF NB <AREA>

«IFF

«IF NB AREA
MOV
ADD

+ENDC

+«ENDC
MOV
JSR

«ENDM

«MACRO ,TIMIO
JSR
«WORD
«WORD
+«WORD
+«WORD

+«ENDM

«MACRO .TLOCK
MOV
EMT

«ENDM

«MACRO .TRPSE

«IF NDF ...Vl
«MCALL .MACS
«MACS
+ENDC

LN) .cu6
eeeCM2
<ENDM
«MACRO .TTINR
EMT

«ENDM
«MACRO .TTYIN
EMT

BCS

+IF NB <CHAR>

SYSTEM MACRO LIBRARY

$1%°0400,%0
0374

AREA,PIC

MoV AREA, 84

S7,%4
SAREA=-,,%4

@8°054,%85
5.,0°0324(5.)

TBK,HI,LO
$S,08TIMIT
TBK=,

0

HI

Lo

$#7.%%0400,%0
“0374

AREA,ADDR,CODE

<AREA>,3.,0,<CODE>
<ADDR>,2,,X

“0340

CHAR

“0340
=2

+«IF DIF <CHAR>,RO

MOVB
«ENDC
+ENDC
«ENDM
+MACRO ,.TTOUT
ENT
+«ENDM

+«MACRO ,TTYOU
«IF NB <CHAR>

$0,CHAR

“034

CHAR

«IF DIF <CHAR>,RO

NOVB
+«ENDC

CHAR, %0

B-17

SYSTEN MACRO LIBRARY

«ENDC
EMT “0341
BCS =2,
+«ENDM

«MACRO ,TWAIT AREA, TIME,CODE
+«IF NDF ,..V1

+MCALL .MACS

«MACS

+ENDC

+eoCM6 <AREA>,20,,0,<CODE>
«eeCM2 <TIME>,2,,X

«ENDM

«MACRO ,UNLOC
EMT 0347
+ENDM

+MACRO .UNMAP AREA, ADDR,CODE
OIF "DF ...VI

«MCALL .MACS

«MACS

«ENDC

.rou6 <AREA>,3°. '5.,<CDDE>
eeeCM2 <ADDR>,2,,X

«ENDM

«MACRO ,UNPRO AREA,ADDR,CODE
«IF NDF ,.,.V1

«MCALL .MACS

«MACS

+«ENDC

eesCM6 <AREA>,25,,1,<CODE>
eeesCM2 <ADDR>,2.,X

«ENDM

«MACRO (WAIT CHAN
«IF NDF ,.,.V1
+MCALL ,MACS

«MACS
«ENDC
oIF EQ +ooeVi=l
EMT “0<240+CHAN>
«1FF
+IF B <CHAN>
CLR 30
+«IFF

«NTYPE ,..V2,CHAN
«IF EQ ...V2-“027
«IF IDN <CHAN>,#0

CLR %0
«IFF

MOV CHAN, %0
«ENDC
«IFF

CLR %0

BIsSB CHAN, %0
+ENDC
«ENDC

EMT ~0374
«ENDC
+«ENDM

B-18

SYSTEM MACRO LIBRARY

«MACRO ,WDBBK WNAPR,WNSIZ,WNRID,WNOFF ,WNLEN,WNSTS
+MCALL ,WDBDF

«WDBDF
«BYTE
«BYTE WNAPR
+«WORD
+«WORD WNSIZ
+«WORD WNRID
+«WORD WNOFF
+«WORD WNLEN
+«WORD WNSTS

+«ENDM

+«MACRO ,WDBDF

W.NID =0

W,NAPR =1

W.NBAS =2,

W.NS1Z =4,

W.NRID =6,

W,NOFF =°010
W.NLEN =%012
W,NSTS =014
W,NLGH ="016
WS,.CRW ="0100000
WS, UNM =°040000
WS.ELW =%020000
WS.MAP 3°0400
+ENDM

«MACRO ,WRITC AREA,CHAN,BUF ,WCNT,CRTN,BLK,CODE
«IF NDF ,..V1
«MCALL .MACS
+MACS
«ENDC
«IF EQ «coVi-l
eesCM5 <CRTN>
eeeCMO <CWCNT>
eesCMO <BUF>
eeeCMO <CHAN>
EMT “0<220+AREA>
+«IFF
eeeCM4 <AREA>,<CHAN>,<BUF>,<WCNT>,<BLK>,<CRTN>,9.,<CODE>
<ENDC
+ENDM

+MACRO .WRITE AREA ,CHAN,BUF ,WCNT,BLK,CRTN=#1,CODE
«IF NDF ,..V1

«MCALL .MACS

«MACS

+ENDC

oIF EQ .e.Vl=}

eeeCMS <CHCNT>

eeoCMO 81

eeoeCMO <BUF>

eesCMO <CHAN>

EMT “0<220+AREA>
«IFF
eeeCM4 <AREA>,<CHAN>,<BUF>,<WCNT>,<BLK>,<CRTN>,9.,<CODE>
«ENDC
«ENDM

«MACRO .WRITW AREA ,CHAN,BUF ,WCNT,BLK,CRTN=#0,CODE
«IF NDF ,..V1
«MCALL .MACS

B-19

+MACS

+ENDC

.IF EQ
esoCMS
LN .c“o
eeoCMO
eesCMO

«IFF
L] .c"‘
+ENDC
+«ENDM

SYSTEM MACRO LIBRARY

seeVi=i
<WCNT>

<BUF>
<CHAN>
EMT *0<2204AREA>

<AREA>,<CHAN>,<BUF>,<WCNT>,<BLK>,<CRTN>,9.,<CODE>

B-20

APPENDIX C

ADDITIONAL 1I/0 INFORMATION

This appendix provides some additional information on I/O processing
that is useful especially to users who need to write their own device
handlers. It contains the I/0 data structure formats, a flowchart of
the sequence of events involved in gqueued I/0O processing, and source
listings of two RT-11 device handlers with 1liberal comments. In

addition, this appendix provides information on device directory
formats and file structures.

Before writing a device handler, programmers should be familiar with
the material in Chapter 1 of this manual. RT-11 provides macros to
make handler writing easier; Chapter 1 describes these macros.
Appendix B contains a listing of the RT-11 system macro library. It
can be helpful to consult the library listing in order to wunderstand
how the macros expand and, therefore, how use them correctly.

Programmers should have a thorough knowledge of the hardware device
for which they are writing the handler. The PDP-11 Peripherals
Handbook contains information on DIGITAL peripherals. The hardware
manuals and engineering prints are the most complete source of
information for DIGITAL devices and those from other manufacturers.

C.1 I/0 Data Structures

RT-11 I/0 data structures are described in this section. These data
structures provide conventions for communication among an application
program, the monitor, and a device handler.

C.l.1 Monitor Device Tables

Tables in the Resident Monitor keep track of the devices on the RT-11
system. These tables are contained in the module SYSTBL, which is
created by system generation and which is assembled separately from
the module RMON. SYSTBL is linked with RMON and other modules to form
the resident monitor. The symbol $SLOT, which is defined at system

generation time, defines the maximum number of devices the system can
have.

C.1.1.1 S$PNAME Table - The permanent name table is called $PNAME. It
is the central table around which all the others are constructed. The
total number of entries is fixed at assembly time. Extra slots can be
allocated at assembly time. Entries are made in $PNAME at monitor
assembly time for each device that is built into the system. Free
slots can be created by deleting or renaming one or more of the device

ADDITIONAL I/O INFORMATION

handler files from the system device and rebooting the system, or by
issuing the REMOVE keyboard monitor command. The INSTALL keyboard
monitor command can be used to install a different device handler into
the table after the system has been booted. INSTALL does not make a
device entry permanent. The DEV macro in SYSTBL must be wused to

permanently add a device to the system. The DEV macro is described in
Section C.1.1.7.

Each table entry consists of a single word that contains the Radix-50
code for the 2-character physical device name. For example, the entry
for DECtape is .RAD50 /DT/. The TT device must be first in the table.
After that, the position of a device in this table is not critical.
Once the entries are made into this table, their relative position
(that is, their order in the table) determines the general device
index used in various places in the monitor. Thus, the other tables
are organized in the same order as $PNAME. The offset of a device

name entry in $PNAME serves as the index into the other tables for a
given device.

The bootstrap checks the system generation parameters of a handler
with those of the current monitor, and zeroes the $PNAME entry for
that device if the parameters do not match. INSTALL cannot install a

handler whose conditional parameters do not match those of the
monitor.

C.1.1.2 $STAT Table - The device status table is called $STAT.
Entries to this table are made at assembly time for those devices that
are built into the RT-11 system. When the system is bootstrapped, the
entries for those devices that are built into the system are updated
with information in the handler files that are present on the system
device. The system device handler does not have to be present on the
system device as a separate .SYS file because it is already a part of
the monitor. Entries are made for devices that are not built into the
system at assembly time when they are installed with the INSTALL
monitor command. Each device in the system must have a status entry
in its corresponding slot in $STAT. The device status word identifies
each physical device and provides information about it, such as
whether it is random or sequential access. Figure C-1 shows the
meaning of the bits in the status word. For a user-written handler,
the programmer sets up the device status word according to the 1layout
in Figure C-1 so it can be stored in block 0 of the handler file.
Figures C-10 and C-12, below, show examples of the device status word
as it is set up in device handlers. The device status word is part of

the information returned to a running program by the .DSTATUS
programmed request.

ADDITIONAL I/0 INFORMATION

1514 13121110 9 8 7 6 5 4 3 2 1 0

HEEEEEEEEEEEEEE

: Device identifier
(see below)

8-9: Reserved

o 10: l=handler accepts .SPFUN
requests
0=.SPFUN requests are illegal
= 11: l=enter handler at abort
entry point on abort
O=enter handler at abort
entry point on abort only if
there is a queue element
belonging to aborted job

- 12: l=non-RT-11 directory-
structured device
(such as MT and CT)

» 13: l=write-only device

—» 14: l=read-only device

» 15: l=random-access device
0=sequential-access
device

Figure C-1 Device Status Word
Note that bit 11 in the status word should be set only for device
handlers that remove the queue element on entry and gueue internally.

All device handlers that have bit 15 set are assumed to be RT-11
file-structured devices by most system utility programs.

In RT-11, symbolic names are defined for certain bit patterns. This
provides a meaningful way to refer to the bits in the device status
word. The SYSTBL source file defines the following bit patterns:

FILSTS = 100000
RONLYS$ = 40000
WONLYS = 20000
SPECLS$ = 10000
HNDLRS$ = 4000
SPFUNS$ = 2000

A programmer can first use direct assignment statements to set up the
symbolic names for the bit patterns, as shown above. Then the device
status word can easily be constructed by adding the device identifier

(described below) to the appropriate bit patterns, according to the
following outline:

.WORD device identifier + symbol

An example of this is the way the RT-11 code in the file SYSTBL.MAC
sets up the device status word for device DX:

.WORD 22 + FILSTS + SPFUNS
See Section C.1.1.7 for more information on the DEV macro in SYSTBL.

Cc-3

ADDITIONAL I/O INFORMATION

The device-identifier byte uniquely identifies each device in the
system. The values are currently defined in octal as follows:

0 = RKO5 disk
1 = TC1ll DECtape
2 = reserved
3 = line printer
4 = console terminal or batch handler
5 = RLO1 disk
6 = RX02 diskette
7 = PCll high-speed paper tape reader and punch
10 = reserved
11 = magtape
12 = RF1l1 disk
13 = TAll cassette
14 = card reader (CR11,CM11)
15 = reserved
16 = RJIS03/4 fixed-head disks
17 = reserved
20 = TJUl6 magtape
21 = RP02/RP03 disk
22 = RXO01 diskette
23 = RKO6/RK07 disk
24 = error log handler
25 = null handler
26-30 = reserved (for Networks)
31-33 = reserved (for DIBOL LQ, LR, LS)
34 = TU58 data cartridge

To create device identifier codes for devices that are not already
supported by RT-11, programmers should start by using code 377 (octal)
for the first-new device, 376 for the second, and so on. This
procedure should avoid conflict with codes that RT-11 will use in the
future for new hardware devices.

C.1.1.3 $DVREC Table - The device handler block number table is
called $DVREC. Entries to this table are made at bootstrap time for
devices that are built into the system, and at INSTALL time for
additional devices. The entries are the absolute block numbers where
each of the device handlers resides on the system device. Since
handlers are treated as files, their positions on the system device
are not necessarily fixed. Thus, each time the system is
bootstrapped, the handlers are located and $DVREC is updated with
their locations on the system device. The pointer in $DVREC points to
block 1 of the file. (Because handlers are linked at 1000, the actual
handler code starts in the second block of the file.) A zero entry in
the $DVREC table indicates that no handler for the device in that slot
was found on the system device. (Note that if block 0 of the handler
file resides on a bad block on the system device, RT-11 cannot install
or fetch the handler.) Note that 0 is a valid S$SDVREC entry for
permanently resident devices.

C.1.1.4 SENTRY Table - The handler entry point table 1is called
SENTRY. Entries in this table are made whenever a handler is loaded
into memory by either the .FETCH programmed request or by the LOAD
keyboard monitor command. The entry for each device is a pointer to
the fourth word of the device handler in memory. The entry is zeroed

when the handler is removed by the .RELEASE programmed regquest or by
the UNLOAD keyboard monitor command.

ADDITIONAL I/0 INFORMATION

Some device handlers are permanently resident. These include the
system device handler and, for FB and XM systems, the TT: handler.
The SENTRY values for such devices are fixed at boot time.

C.1.1.5 SUNAM1 and $UNAM2 Tables - The tables that keep track of
logical device names and the physical names that are assigned to them
are called SUNAM1 and $UNAM2. Entries are made in these tables when
the ASSIGN monitor command 1is issued. The physical device name is
stored in SUNAM1 and the logical name associated with it is stored in
the corresponding slot in SUNAM2. When the system is first
bootstrapped, there are two assignments already in effect. These
assignments associate the logical names DK: and SY: with the device
from which the system was booted. The value of $SLOT limits the total
number of logical name assignments (excluding SY and DK).

The SUNAM1 and SUNAM2 tables are not indexed by the $PNAME table
offset. The fact that the tables are the same size is interesting,
but not significant.

C.1.1.6 S$SOWNER Table - The device ownership table is called SOWNER.
It is used in the FB and XM environments to arbitrate device
ownership. The table is (SSLOT*2) words in length and is divided into
2-word entries for each device. Entries are made into this table when
the LOAD keyboard monitor command is issued. Each 2-word entry is in
turn divided into eight 4-bit fields capable of holding a job number.
The low four bits of the first byte correspond to unit 0, and the high
four bits correspond to unit 1. The low four bits of the next byte
correspond to unit 2, and so on. Thus, each device 1is presumed to
have up to eight units, each assigned independently of the others.
However, if the device is nonfile-structured, units are not assigned
independently: the monitor ASSIGN code ensures that ownership of all
units is assigned to one job.

when either a packground or a foreground Jjob attempts to access a
particular unit of a device, the monitor checks to be sure the unit
being accessed is either public or belongs to the requesting job. If
the other job owns the unit, a fatal error is generated.

The device is assumed to be public if the 4-bit field is 0. If the
device is not public, the field contains a code equal to the job
number plus 1. Since job numbers are always even, the ownership code
is odd. Bit 0 of the field being set indicates that the unit

ownership is assigned to a job (1 for the background job and 3 for the
foreground job).

C.1.1.7 Adding a Device to the Tables - The DEV macro in SYSTBL.MAC

is used to define devices in the system. The format of the DEV macro
is as follows:

DEV name,s,type

ADDITIONAL I/0 INFORMATION

The arguments in the macro shown above have the following meaning:

name represents the two-character physical device name, such
as RK or DX.

s represents the device status word. This word consists
of a device identification code plus a set of device
characteristics bits from the following set:

FILSTS = 100000
RONLYS = 40000
WONLYS = 20000
SPECLS = 10000
HNDLRS = 4000
SPFUNS§ = 2000
type must be SYS if the device can be a system device. A

device can be a system device if it is random-access
and file-structured.

Examples of the DEV macro as used in SYSTBL are as follows:
DEV RK,0+FILSTS,SYS
DEV LP,3+WONLYS

DEV MT,11+SPECLS$+SPFUNS

C.1.2 The Low Memory Protection Bitmap

RT-11 maintains a bitmap that reflects the protection status of low
memory, locations 0 through 477. This map is required in order to
avoid conflicts in the use of the vectors. In FB and XM, the .PROTECT
programmed request allows a program to gain exclusive control of a
vector or a set of vectors. When a vector is protected, the bitmap is
updated to indicate which words are protected. If a word in low
memory is not protected, it is loaded from block 0 of the executable
file. If a word in low memory is protected, it is not loaded from
block 0 of the file. In addition, if the word is protected by a

foreground job, it is not destroyed when a new background program is
run.

The bitmap is a 20 (decimal) byte table that starts 326 (octal) bytes
from the beginning of the Resident Monitor. Table C-1 lists the

offset from RMON and the corresponding locations represented by that
byte.

Table C-1
Low Memory Bitmap

Offset Locations Offset Locations
(octal) (octal)

326 0-17 340 240-257
327 20-37 341 260-277
330 40-57 342 300-317
331 60-77 343 320-337
332 100-117 344 340-357
333 120-137 345 360-377
334 140-157 346 400-417
335 160-177 347 420-437
336 200-217 350 440-457
337 220-237 351 460-477

ADDITIONAL I/0 INFORMATION

Each byte in the table reflects the status of 8 words of memory. The
first byte in the table controls locations 0 through 17, the second
byte controls locations 20 through 37, and so on. The bytes are read

from left to right. Thus, if locations 0 through 3 are protected, the
first byte of the table contains:

11000000
NOTE
Oonly individual words are protected, not
bytes. Thus, protecting word 0 means
that both 1locations 0 and 1 are
protected.

If locations 24 and 26 are protected, the second byte of the table
contains:

00110000

The 1leftmost bit represents 1location 20 and the rightmost bit
represents location 36. To protect locations 300 through 306, the

leftmost four bits of the byte at offset 342 must be set to result in
a value of 360 for that byte:

11110000

The SJ monitor does not support the .PROTECT programmed request. If
users need to protect vectors, they should use one of the two
following methods:

1. Use PATCH to manually modify the bitmap
2. Dynamically modify the bitmap from within a running program

For example, to protect locations 300 through 306 dynamically, the
following instructions can be used:

MOV @#54,R0
BISB #°B11110000,342(RO)

Protecting locations with PATCH means that the vector 1is permanently
protected, even if the system is rebootstrapped. The dynamic method
provides a temporary measure and does not remain effective across
bootstraps. Users are cautioned that the dynamic method involves
storing data directly into the monitor. For this reason, it is
recommended that SJ users use PATCH to protect vectors.

C.1.3 Queue Elements

The RT-11 system uses queues to organize requests in a
first-in/first-out order. Requests for I/0 transfers, completion
routines, and timer routines are queued for later service. Each
request uses one queue element. The elements are arranged in linked
lists so that they are processed in order. Each element contains all
the information necessary to initiate and process a single reguest.
Foreground requests are added to an I/O queue in front of background
requests. However, a foreground request cannot replace an active
background request (the current queue element).

ADDITIONAL I/O INFORMATION

C.1.3.1 1I/0 Queue Element - Once a device handler is in memory, any
-READ/.WRITE programmed request for the corresponding device is
interpreted by the monitor and translated into a call to the 1I/0
device handler. To facilitate the overlapping of I/O and computation,
all I/0 requests in RT-11 are processed through an 1/0 gueue.

The RT-11 I/O queue is made up of one linked list of queue elements
for each resident device handler. 1/0 gueue elements are seven words
long for SJ and FB systems, and ten words long for XM systems. RT-11
provides one gqueue element in the Resident Monitor for the SJ
environment. For the FB and XM environments, each job has one queue
element in its impure area. This is sufficient for any program that
uses wait mode I/0O (.READW/.WRITW). However, for maximum throughput,
the .QSET programmed request should be used at the beginning of a
program to create one additional queue element for each asynchronous

I/0 request that can be outstanding. Then, asynchronous I/0 should be
used.

If an I/0 transfer is requested and a queue element is not available,
RT-11 must wait until an element is free before it can queue the
request. This obviously slows program execution. If the program
requires asynchronous I/0, it must allocate extra gueue elements. It
is always sufficient to allocate N new queue elements, where N is the
maximum number of pending requests that can be outstanding at any time
in a particular program. This produces a total of N+1 available
elements, since the element in the job's impure area is added to the
list of available elements.

Figure C-2 shows the format of an I/0 queue element and the meaning of
each entry. The .QELDF macro defines symbolic names for the offsets
from the beginning of the I/0 queue element and a symbolic name for
the size of the queue element. Figure C-2 also shows the offsets and
the symbolic name that is associated with each offset.

Note that .QELDF defines offsets from the beginning of the gqueue
element. From within a device handler, the pointer to the current
queue element points to the third word of the element. Therefore, the
offsets from .QELDF cannot be used directly to access words in the
queue element. The following example from the PC handler illustrates

a construction that is typically used in handlers to account for this
discrepancy:

BUFF = Q.BUFF - Q.BLKN

Name Offset Contents
Q.LINK 0 Link to next queue element; 0 if none
Q.CSW 2 Pointer to channel status word in I1/0
channel (see Figure C-7)
Q.BLKN 4 Physical block number
Q.FUNC 6 reserved| Job Device Special
Q.UNIT 7 Number Unit Function
Q.JNUM 7 (1 bit) (4 bits) [(3 bits) | Code
0 = BG (8 bits)
2 = FG
Q.BUFF 10 User buffer address (mapped through PARI1

with Q.PAR value, if XM)

Figure C-2 1I/0 Queue Element Format

Cc-8

ADDITIONAL I/0 INFORMATION

Name Offset Contents

Q.WCNT 12 if <0, operation is WRITE
Word count if =0, operation is SEEK

if >0, operation is READ
The true word count is the absolute
value of this word.

Q.COMP 14 Completion if 0, this is wait mode I/O
routine if 1, just queue the request
code and return

if even, completion routine
address

Q.PAR 16 PAR1 Relocation Bias (XM only)

reserved (XM only)

reserved (DECnet)

Figure C-2 1/0 Queue Element Format (Cont.)

Q.LINK, the link to the next gqueue element, points to the third word
of the next queue element, not to its first word.

Q.LINK and Q.CSwW are 16-bit physical addresses. They are always used

in kernel mode, and therefore must always be in the lower 28K words of
memory.

In XM systems, Q.BUFF is always an address between 20000 and 37777.
To access the byte in the user's physical memory, the monitor loads
PAR1l (Page Address Register 1 of the KT1ll memory management hardware)

with the Q.PAR values and then uses Q.BUFF as a pointer to the correct
byte.

C.1.3.2 Timer Queue Element - Another queue maintained by the monitor
is the timer queue. This queue is used to implement the .MRKT time

and .TIMIO requests, which schedule completion routines to be entered
after a specified period of time.

Figure C-3 shows the format of a timer queue element. It includes the
symbolic names and offsets as well as the contents of each word in the
data structure. Note that time 1is stored as a 2-word number, a
modified expression of the number of ticks until the timed wait
expires. (There are sixty ticks per second when 60 Hz power is used,
and 50 ticks per second when 50 Hz power is used.) The timer gqueue
elements are stored in the queue in order of their expiration times.
An optional sequence number can be added to the reguest to distinguish
it from others issued by the same job.

The monitor uses the timer queue internally to implement the .TWAIT
programmed request. The .TWAIT request causes the issuing job to be
suspended. A timer request is placed in the queue with the .RSUM
programmed request 1logic as the completion routine. This causes
execution to wait until the desired time has elapsed. Then execution
resumes when the monitor itself issues the .RSUM programmed request.

A range of owner's sequence number IDs is reserved for use by DIGITAL
software. All values 1in the range from 177400 through 177777 are

reserved for DIGITAL. These values should not be used by customer
programs.

c-9

ADDITIONAL I/O INFORMATION

There are several uses for system timer elements. If C.SYS is -1, the
element is being used for either multi-terminal time-out support, or
for device handler time-out support. If C.SYS is -3, the element is
being used to implement a .TWAIT request in the XM monitor.

In XM, completion routines that have -1 in C.SYS are run in kernel
mode and the queue element is discarded. That is, the gueue element
is not linked into the list of available elements. If C.SYS is -3,
the completion routine is still run in kernel mode. However, the
queue element is linked into the user's available queue when the
completion routine is run. (The timer gueue element is used as the
completion queue element.) In all other cases, the queue element is

linked into the available queue and completion routines run in user
mode.

Name Offset Contents
C.HOT 0 High order time
C.LOT 2 Low order time
C.LINK 4 Link to next queue element; 0 if none
C.JNUM 6 Owner's job number
C.SEQ 10 Owner's sequence number ID
C.SYS 12 -1 if system timer element
-3 if .TWAIT element in XM
C.COMP 14 Address of completion routine

Figure C-3 Timer Queue Element Format

C.1.3.3 Completion Queue Element - The FB and XM monitors maintain
one queue of I/0O completion requests for each job. When an I/0
transfer completes, the I/O queue element indicates whether or not a
completion routine was specified in the request. If the seventh word
of the I/O queue element is even and nonzero, a completion routine was
requested. The queue completion logic in the monitor transfers the
I1/0 request queue element to the completion queue. It places the
channel status word and channel offset in the element. This has the
effect of serializing completion routines, rather than nesting them.
Elements are also added to this queue when a timer request expires and
when a .SYNCH request is issued. The completion queue is a
first-in/first-out queue. The completion routines are entered at
priority level 0 rather than at interrupt level. In SJ, completion
routines can interrupt each other. 1In FB and XM, no other code except
interrupts can execute when a completion routine is running.

Note that completion routines are not serialized in the SJ
environment, because there is no completion queue in SJ. Completion
routines in SJ do not run in a first-in/first-out order. They are
executed as soon as the I/0 or timer request is complete.

Figure C-4 shows the format of a completion gqueue element. It
includes the symbolic names and offsets as well as the contents of
each word in the data structure.

ADDITIONAL I/0 INFORMATION

Name Offset Contents

Q.LINK 0 Link to next gqueue element; 0 if none
2 Undefined
4 Undefined
6 Undefined

Q.BUFF 10 Channel status word

Q.WCNT 12 Channel offset

Q.COMP 14 Completion routine address

Figure C-4 Completion Queue Element Format

C.1.3.4 synch Queue Element - In the FB and XM monitors the .SYNCH
request makes use of the completion gueue. When the .SYNCH programmed
request is entered, the 7-word area supplied with the request is
linked into the head of the completion queue, where it appears to be a
request for a completion routine. The .SYNCH request then does an
interrupt exit. The completion gqueue manager next calls the code
following the .SYNCH request at priority level 0 (after a possible
context switch to bring in the correct job). To prevent the .SYNCH
block from the user's program from being 1linked in the gqueue of
available queue elements after the routine exits, the sixth word is
set to -1. The completion gueue manager checks the sixth word before
linking a queue element back into the list of available elements, and
skips elements with -1 there.

In the SJ monitor, the .SYNCH reguest sets up the registers, drops
priority to 0, and calls the code following the reguest as a

co-routine. When the co-routine returns, the .SYNCH 1logic does an
interrupt exit.

Figure C-5 shows the format of a synch gueue element. It includes the

symbolic names and offsets as well as the contents of each word in the
data structure.

Name Offset Contents

Q.LINK 0 Link to next queue element; 0 if none
Q.CSw 2 Job number

Q.BLKN 4 Undefined

Q.FUNC 6 Undefined

Q.BUFF 10 Synch ID

Q.WCNT 12 -1

Q.COMP 14 Synch routine address

Figure C-5 Synch Queue Element Format

C-11

ADDITIONAL I/O INFORMATION

C.1.3.5 Fork Queue Element - The RT-11 system maintains one fork
queue. Its root is in the Resident Monitor. The device handler must
provide a 4-word fork block that will be used as the fork gqueue
element. Section 1.4.4.1 in this manual describes the .FORK macro.

Figure C-6 shows the format of a fork queue element. It includes the

symbolic names and offsets as well as the contents of each word in the
data structure.

Name Offset Contents

F.BLNK 0 Link to next queue element; 0 if none
F.BADR 2 Fork routine address

F.BR5 4 R5 save area

F.BR4 6 R4 save area

Figure C-6 Fork Queue Element Format

C.1.4 I/0 Channel Format

Figure C-7 shows the format of an I/0 channel. Since each channel
uses five words, the size of the monitor's channel area is five times
the number of channels. RT-11 allocates 16 channels for each job.
The channel area is 80 (decimal) words long. For SJ, a single channel
area is located in RMON. For FB and XM, one channel area for each job

is located in the job's impure area. The .CDFN programmed request can
provide more channels.

Name Offset | Contents
0 Channel status word
C.SBLK 2 Starting block number of this file
(0 if nonfile structured)
C.LENG 4 Length of file (if opened by .LOOKUP);
Size of empty area (if opened by .ENTER)
C.USED 6 Actual data length (if .LOOKUP);
Highest block written (if .ENTER)
C.DEVQ 10 Device Number of requests
unit number pending on this channel

Figure C-7 1/0 Channel Description

C-12

ADDITIONAL I/O INFORMATION
Figure C-8 shows the significant bits in the channel status word.

1514 13121110 9 8 7 6 5 4 3 2 1 0

N 7 —

W 0: Hard error bit
0 No error
1 Hard error

1-5: Index into S$PNAME
table

» 6: RENAME flag
0 = No RENAME in progress

1 RENAME in progress
»7: 0 = (.LOOKUP) Do not modify
directory at close
1 = (.ENTER) Modify directory

at close

» 8-12: Number of the
directory segment con-
taining this entry

+13: 0
1

No error
End-of-file found on
this channel

+» 14: Reserved

Channel free

—15: 0
1 Channel active

nn

Figure C-8 Channel Status Word

C.2 Flow of Events in I/0 Processing

Figure C-9 shows a simplified diagram of the flow of events involved
in an 1I/0 transfer. The following example, a read request to the RK
disk handler, shows the relationship between the application program
and the queue elements, and between the gqueue elements and the device
handler. The flow of events for a non-DMA device 1is slightly
different. (Figure C-12 shows a device handler for a non-DMA device,
the paper tape reader and punch.)

This simplified diagram assumes that no other interrupts occur during
this processing, and that the FB monitor is being used.

Cc-13

ADDITIONAL I/0O INFORMATION

Event

Application program issues:
1. .READW or

2. .READC or

3. .READ

!

Monitor processes the
programmed request in the
EMT processor section.

!

Monitor takes a queue
element from the list of
available elements for this
job. Priority 7 during this
procedure ensures that the
queue of available elements
remains stable.

1

Monitor places the element
on the handler's queue. The
monitor holds the handler
during this procedure to
ensure that the handler's
queue remains stable.

!

If handler is not busy, the
monitor calls it at the
sixth word (start of the
the I/0 initiation section).

!

Handler computes disk
address, determines type of
operation, starts device,
and returns to monitor.

1

1. If .READW issued, monitor
waits for I/O to complete
before returning to the
application program.

2. Program runs if .READC
issued.

3. Program runs until .WAIT
if .READ issued.

until...

[Processor priority]

[PRO]

[PRO]

[PR7]

[PRO]

[PRO]

[PRO]

[PRO)

Meanwhile, the device is
performing the I1/0 transfer.

Y

Device interrupts through
vector; new PC and PS start
execution in handler at the
interrupt entry point.
Handler calls monitor
through $INPTR to $INTEN.

J

Figure C-9

[PR7]

Flow of Events in I/0 Processing

ADDITIONAL I/O INFORMATION

Monitor switches to system
state, lowers priority to [PR7, PR5]
device priority (PR5 for
RK0S5), increments the in
terrupt level state indi-
cator from 1 (user state)
to 0 (system state) and does
a coroutine call back to the
handler.

1

The handler determines if
the transfer was successful, [PR5]
or if there was some error.

1

Any errors? NO
YE?

Handler goes to fork level Handler goes to fork level
to process the errors. It [PR5, to log successful transfer,
retries the transfer eight PRO] then exits to the monitor
times. If the error is fatal at the monitor I/0 comple-
the handler sets the hard tion code.
error bit and returns to

the monitor 1/0 completion.
Y

Monitor decrements the in-

terrupt level state indica- [PRO]

tor from 0 to 1, switching

to user state, and returns

to the application program.

2

Application program:

1. Continues with first [PRO]
statement after .READW,
if .READW issued.

2. Continues executing a
synchronously if .READC
issued.

3. Continues with first
statement after .WAIT,
if .READ/.WAIT issued.

Figure C-9 Flow of Events in I/0 Processing (Cont.)

C.3 Study of the RKO05 Handler

Figure C-10 provides a listing of the assembled RK0O5 handler file.
The comments give a detailed explanation of the handler. The RKO05
handler was chosen as a representative handler for a random access
disk that can be a system device. For this example, the RK handler

was assembled as a data device only. See Section C.4 for information
on system device handlers.

ADDITIONAL I/0 INFORMATION

In Figure C-10, black ink is used for text and comments. Red 1ink is

used for the actual computer output of the RKO5 handler assembly
listing.

Device handlers are written in position independent code, called PIC.
The PDP-11 processors offer addressing modes that make it possible to
write instructions that are not dependent on the virtual addresses to
which they are linked. A body of such code is termed position
independent, and can be loaded and executed at any virtual address.
(See Appendix G, "Writing Position Independent Code", in the PDP-11
MACRO-11 Language Reference Manual, order number AA-5075A-TC.)
Throughout the RKO5 handler listing, coding constructions that were

used specifically to make the handler position independent are marked
as [PIC].

This listing was produced by assembling the conditional file
RKCND.MAC together with the RK handler source file, RK.MAC. The

command strings to produce this assembly and the listing file
RK.LST are as follows:

Keyboard monitor command:

-MACRO/LIST:RK.LST/NOOBJECT/SHOW :ME :MEB: TTM RKCND.MAC+RK.MAC

MACRO program commands:

.R MACRO
* ,RK.LST/L:ME:MEB:TTM=RKCND.MAC, RK.MAC

The first file listed below, RKCND.MAC, was created especially for
this example. It was assembled together with the handler source
file, RK.MAC, to produce code for the three system generation
conditions: memory management, error logging, and device time-out.
Normally, a device handler is assembled with the system conditional
file, SYCND.MAC, to ensure that the handler has the same system
generation parameters as does the current monitor.

C-16

ADDITIONAL I/0 INFORMATION

This listing was produced by assembling the conditional file
RKCND.MAC together with the RK handler source file, RK.MAC. The
command strings to produce this assembly and the listing file
RK.LST are as follows:

Keyboard monitor command:
.MACRO/LIST: RK.LST/NOOBJECT/SHOW:ME:MEB: TTM RKCND.MAC+RK.MAC
MACRO program commands:

.R MACRO
RK.LST/L:ME:MEB:TTM=RKCND.MAC, RK.MAC

The first file listed below, RKCND.MAC, was created especially for
this example. It was assembled together with the handler source
file, RK.MAC, to produce code for the three system generation con-
ditions: memory management, error logging, and device time-out.
Normally, a device handler is assembled with the system conditional
file, SYCND.MAC, to ensure that the handler has the same system
generation parameters as does the current monitor.

RKOS V03.01 MACRO V03.02B6-SEP-78 11:55:53 PAGE 1

1 ;CONDITIONAL FILE FOR RK HANDLER EXAMPLE

2 ;

3 sRKCND.MAC

4 ;

5 ;9/1/78 JAD

6 ;

7 ;s ASSEMBLE WITH RK.MAC TO TURN ON 18-BIT 1/0,

8 ; TIME-OUT SUPPORT, AND ERROR LOGGING FOR

9 ; RK HANDLER

10 ;

" 000007 MMG$T =1 ;TURN ON 18-BIT 1/0

12 000007 ERL$G = 1 ;TURN ON ERROR LOGGING
13 000007 TIM$IT = 1 ;TURN ON TIME-OUT SUPPORT

The listing of the RK handler source file that follows is current
for RT-11 VO3B; it includes one source patch. Comments that are
part of the source file itself are all upper-case characters and
begin with a semicolon (;). Comments that were added as documenta-
tion in this appendix are upper- and lower-case characters.

Figure C-10 RKOS5 Handler Listing

c-17

ADDITIONAL I/0 INFORMATION

RKO5 V03.01 MACRO V03.02B6-SEP-78 11:55:53 PAGE 2

;RK EDIT LEVEL 0

-TITLE RKO5 V03.01

-IDENT /V03.01/

; RT-11 DISK (RK11) HANDLER

COPYRIGHT (C) 1978

OO~NoUVEw N —

DIGITAL EQUIPMENT CORPORATION
; MAYNARD, MASSACHUSETTS 0175U4
9
10
M
12

; THIS SOFTWARE IS FURNISHED UNDER A LICENSE FOR USE ONLY
ON A SINGLE COMPUTER SYSTEM AND MAY BE COPIED ONLY WITH
; THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS

13 SOFTWARE, OR ANY OTHER COPIES THEREOF, MAY NOT BE

15 i PERSON EXCEPT FOR USE ON SUCH SYSTEM AND TO ONE WHO
16 AGREES TO THESE LICENSE TERMS. TITLE TO AND OWNERSHIP
17 Of THE SOFTWARE SHALL AT ALL TIMES REMAIN IN DEC.

18

19 ; THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO

20 CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED

21 AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION.

22 H

23
24
25

; DEC ASSUMES NO RESPONSIBILITY FOR THE USE
OR RELIABILITY OF ITS SOFTWARE ON EQUIPMENT
 WHICH IS NOT SUPPLIED BY DEC.

)
’
’
’
’
U ; PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER
’
’
’
’
’
’
’
’
RKO5 V03.01 MACRO VO03.02B6-SEP-78 11:55:53 PAGE 3

1 -ENABL LC

***&5**!&*&*l‘*l’ill*!l&!Ql!*l&i*.*!.ﬁ'll}"i‘l.

The device handler Preamble Section starts here.

*****il*i**!!l*!i*!ll‘!*!Q*IQ.*!!.’Q!!&’Q.O!Q!&Q

-MCALL .DRBEG,.DREND,.FORK,.DRAST,.DRFIN,.QELDF

w v

Each macro that is used in the handler requires the .MCALL state-
ment, as shown above. The .QELDF, -DRBEG, .DRAST, .DRFIN, and
.DREND macros are provided in the system macro library in order to
simplify writing a device handler.

Figure C-10 RKO5 Handler Listing (Cont.)

C-18

ADDITIONAL I/0 INFORMATION

4 . SYSTEM GENERATION OPTIONS:

The code in this handler contains many conditional assembly direc-
tives. They test for the presence or absence of time-out support,
extended memory support, and error logging. Code is generated dif-
ferently depending on which of those system generation options are
present in the system. When a system is generated, the handler
files are assembled together with SYCND.MAC, the system conditional
file, so that the correct conditionals are defined in the handler
files. If a handler is to be added to an existing system, it
should be assembled with the same conditional file that was used
for the rest of the system. If there is no conditional file assem-
bled with the handler file, the conditionals are turned off by the
following three lines of code (for the purpose of this example, the
three following conditionals were set to 1 by the preceding file,
RKCND.MAC) :

.IIF NDF TIMIT,TIMIT=0 [No device time-out support]
.IIF NDF MMGT, MMGT=0 [No memory management]
.1IF NDF ERLG, ERLG=0 [No error logging]

LcooNounm

.NLIST CND

For the purpose of this listing, printing of conditional source
lines is suppressed within the expansion of system macros. This is
accomplished by the .NLIST CND and .LIST CND pair of directives.

10 00000C .QELDF

The .QELDF macro defines symbolic offsets into the I/0 queue ele-
ments. See Figure C-2 above for a diagram of the I/0 queue ele-
ment.

(00000 Q.LINK=0 [Link to next queue element]

(00002 Q.CSwW=2. [Pointer to channel status word]
(00004 Q.BLKN=4. [Physical block number]

(00006 Q.FUNC=6. [Special function code]

(00007 Q.JNUM=7. [Job number]

(00007 Q.UNIT=7. (Device unit number]

000010 Q.BUFFz="010 [User virtual memory buffer address]
000012 Q.WCNT="012 [Word count]

000014 Q.COMP="014 [Completion routine code]

000016 Q.PAR="016 [PAR1 relocation bias]

(00024 Q.ELGH="024 [End of queue element, used to find length]

Figure C-10 RKOS5 Handler Listing (Cont.)

c-19

ADDITIONAL I/O INFORMATION

M .LIST CND
12

The following direct assigrment statements are required only if the
handler can be a system device. For this example the RK handler
was assembled as a mass storage device only, and not as a system
device. Therefore, the symbol $RKSYS in SYCND.MAC was not set to
1. It does not cause a problem to leave the assigmment statements
in place if the handler is being assembled only as a storage device
and not as a system device. The globals being defined here are the
entry points for all the other system devices in the RT-11 system.

13 000000 DTSYS == 0 ; TEIS I3 RK HANDLER
14 000000 DLSYS == 0

15 000000 DSSYS == 0

16 000000 DXSYS == 0

17 000000 DPSYS == 0

18 000000 RFSYS == 0

19 000000 DMSYS == 0

20 000000 DYSYS == 0

21

22 ; RK CONTROL DEFINITIONS:

The next two statements define the vector and CSR addresses for the
RK device, if they have not already been defined in the system con-
ditional file, SYCND.MAC. The default vector is 220; the default
CSR address is 177400.

23 -IIF NDF RKVEC, RKVEC == 22¢
24 -IIF NDF RKCSR, RKCSR == 177400

The following group of direct assigmment statements set up the dev-
ice control registers. The device control register names, loca-
tions, and operation codes can be found in the PDP-11 Peripherals
Handbook and in the hardware manual for the device.

25 177400 RKDS = RK$CSR [Drive Status Register]

26 177402 RKER = RKDS+2 [Error Register]

27 177404 RKCS = RKDS+4 [Control Status Register]

28 177406 RKWC = RKDS+6 [Word Count Register]

29 177410 RKBA = RKDS+10 [Current Bus Address Register]
30 177412 RKDA = RKDS+12 [Disk Address Register]

{RKDB, the Data Buffer Register, is not used]
31

Figure C-10 RKO5 Handler Listing (Cont.)

C-20

ADDITIONAL I/O INFORMATION

The symbol RKCNT represents the number of times to retry an I1/0
transfer should an error occur.

32 00J)010 RKCNT =10 ;# ERROR RETRYS
33

The device status word RKSTS and the device size word RKDSIZ are
set up here. The information they contain is used by the .DSTATUS
programmed request, which returns the information to a running pro-
gram. See Figure C-1 for the format of the device status word.
The diagram below shows how the code 100000 was selected for the RK
device status word.

151413121110 9 8 7 6 5 4 3 2 1 0

1]0|l0]ofl0ojojojojOof0]O|O}jOf0OfO}O

R 4 J
0-7: Device ID code for RK = O

» 8-9: Reserved, =0

+ 10: No .SPFUN requests accepted

L]

11: Handler abort entry taken only if
job has active queue elements

Y

12: RT-11 directory structured

Y

13: Not a write-only device

= 14: Not a read-only device

- 15: Randam-access device

34 100000 RKSTS = 100000 ;DEVICE SYSTEM STATUS
;WORD ($STAT)
35 011300 RKDSIZ = 11300 ;DEVICE BLOCK SIZE ($DVSIZ)

The next four direct assigmment statements are for error logging.

36 000000 RKIDEN = O sRK11 ID = O IN HIGH BYTE
:FOR ERROR LOG

37 000377 RKIDS = 377 'RK11 DEVICE ID = O IN HIGH
:BYTE

38 21 IN LOW BYTE FOR 1/0

;SUCCESS TO ERROR LOG

Figure C-10 RKO5 Handler Listing (Cont.)

ADDITIONAL I/O INFORMATION

39 004000 RKRCNT = 4000 ;170 RETRKY COUNT IN HIGH BYTE
40 000007 RKNREG =7 ;# OF REGISTERS TO READ
y ;FOR ERRCR LOG

1

****&**&&l*&*‘*“**l**i&l**i*!*ll.*&l’!!*l&‘*!l

The device handler Header Section begins here.

&****i*i&ﬂ&'***&**!*li!*’*lﬁ'll*.’ill!*l.ﬁll'*

u2 ; START OF DRIVER
43 .NLIST CND
44 000000 -DRBEG RK,RK$VEC,RKDSIZ, RKSTS

The .DRBEG macro generates the following block of code (up to the
next .LIST CND directive):

000000 .ASECT [Stores information in block 0 of handler]
000052 . = 52
.GLOBL RKEND
000052 000550 .WORD <RKEND - RKSTRT>
000054 011300 .WORD RKDSIZ
000056 100000 .WORD RKSTS

The three words shown above are extracted by the bootstrap.

Normally, determining the size of the device for the xxDSIZ word,
above, 1is a simple matter. However, some device handlers can con-
trol devices that permit two different size volumes to be used. An
example of this is the DM handler, which can access either RK06 or
RKO7 disks through a single controller. Such handlers should place
the size of the smaller volume in the xxDSIZ word, above. If ne-
cessary, the handler can permit a running program to issue an
-SPFUN programmed request to determine the size of the volume that
is currently mounted. Bit 10 (SPFUN$) of the device status word
must be set by the handler at assembly time to indicate that .SPFUN
requests are allowed.

The DM handler, for example, handles I/0 to the RKO6 and RKO7 disks
as follows. First, it selects a unit (0 through 7) of the device
by placing opcode 01 in RKCS1 (the RK06/07 Control and Status Re-
gister 1). Then it gets the value of bit 8 fram RKDS (Drive Status
Register). A value of 0 means that the selected unit is an RKO6.
A value of 1 indicates RKOT. Next, the handler puts this value,
the 0 or 1, into bit 10 of RKCS1. Finally, it is ready to calcu-
late the correct disk address and do a data transfer.

Figure C-10 RKO05 Handler Listing (Cont.)

ADDITIONAL I/0 INFORMATION

000000 .CSECT [Returns to the unnamed .PSECT]
000000 RKSTRT: :
.GLOBL RKINT

The first word of the handler, RK$VEC, contains the vector address
for the device:

000000 (QVce0 .WORD RK$VEC

The second word of the handler, shown below, is the self-relative
byte offset to the interrupt entry point RKINT:. It is also used
by the monitor abort I/0 request code to find the abort entry point
of the handler. The abort entry point is the word preceding the
RKINT label.

000002 100172 .WORD RKINT -

The third word of the handler, shown below, contains the PS to be
inserted into the device vector. The high byte must be 0. The low
byte should be 340, for priority 7. However, if the low byte is
lower than 340, the .FETCH code forces it to the actual new PS in
the vector in order to specify priority 7. The condition bits can
be used to distinguish up to 16 different interrupts or controll-
ers. They are copied into the PS word of the vector and set in the
PS when the device interrupts using that vector.

The monitor also uses the third word of the handler as a flag area
in order to hold the handler. When the monitor needs to manipulate
the I/0 queue of a handler while I/0 is active, or if it must abort
the handler, it prevents the handler from completing a transfer and
releasing a queue element by setting bit 15 of this word. It actu-
ally does this by rotating the C bit into bit 15. If the handler
does a .DRFIN operation while it is held, the monitor shifts word 3
right again, effectively setting bit 14, and returns without af-
fecting the queue. When the handler is freed later, the monitor
checks to see if bit 14 was set, indicating that the handler tried
to return a queue element while it was held. If that is so, moni-
tor routine COMPLT is called for the handler to return the queue
element and start an I/0 operation on the next queue element.

000004 000340 .WORD ~03u0

000006 RKSYS:: [Required if the device can be a system device]

Figure C-10 RKO5 Handler Listing (Cont.)

Cc-23

ADDITIONAL I/O INFORMATION

The address of the fourth word of the handler, RKLQE, is placed in
the monitor $ENTRY table. RKLQE points to the last queue element
in the queue for this handler, thus making it easier for RMON to
add elements to the end of the queue. If there are no more ele-
ments in the queue, this word is 0.

000006 000000 RKLQE:: .WORD 0

The fifth word of the handler, RKCQE, points to the third word,
Q.BLKN, of the current queue element. If there is no current queue
element, RKCQE is 0.

000010 000000 RKCQE:: .WORD 0O
45 .LIST CND

&*l*&*&iil‘l*ill&il*ﬁ&*l!ll**.ll!!’&il..*l!

The handler 1/0 Initiation Section begins here.

**&*l&&l*l*&Qi!ﬁ&&lﬁl!!i..l*&.i’ll.ll!ll!!.’.!&

46 -IF EQ MMGST

Most of the code in the handler is assembled based on the value of
certain conditionals, such as MMG$T. The IF statement above con-
trols the assembly of the code in this handler. If the handler is
assembled with MMG$T = 1 (that is, with extended memory support en-
abled), code following the .IFF statements is assembled. If the
handler does not have extended memory support enabled (that is, if
MMG$T = 0), code following the .IFT statements is assembled. Code

following the .IFTF statements is always assembled, regardless of
the value of MMG$T.

u7 IFTF

The next statement is the first executable statement of the handler
code. This point is reached after a .READ or .WRITE programed re-
quest is issued in a program. The monitor queue manager calls the
handler with a JSR PC at the sixth word whenever a new queue ele-
ment becomes the first element in the handler's queue. This situa-
tion occurs when an element is added to an empty queue, or when an
element becomes first in the queue because a prior element was re-
leased. This section initiates the I/0 transfer.

Figure C-10 RKO5 Handler Listing (Cont.)

