SYSTEM SUBROUTINE LIBRARY

Notes:

1. This function can be cancelled at a later time by an ICMKT
function call.

2. 1If the system is busy, the actual time interval at which ghe
completion routine is run can be greater than the time
interval requested.

3. FORTRAN subroutines can periodically reschedule themselves by
issuing ISCHED or ITIMER calls.

4., ITIMER requires a queue element; this should be -considered
when the IQSET function (Section 4.3.37) is executed.

For more information on scheduling completion routines, see Section
4.2.1 and the assembly language .MRKT request, Section 2.4.

Errors:

i Normal return
1 No queue elements available; unable to schedule

request.

won
[=]

Example:

INTEGERX2 AREA(4)
EXTERNAL WATCHID

.

IF THE CODE FOLLOWING ITIMER DOES NOT REACH THE ICMKT CALL
IN 12 MINUTES, WATCH DOG COMFLETION ROUTINE WILL RE
ENTERED' WITH ID OF 3

s ReNp el

CALL ITIMER(O»12y050yAREA»3»WATCHD)

.

CALL ICMKT(3sAREA)

*

END
SURROUTINE WATCHDOC(ID)

c THIS IS CALLED AFTER 12 MINUTES

3

.

RETURN
END

ITLOCK

4.3.50 ITLOCK (FB and XM Only)

The ITLOCK function is used in an FB or XM system to attempt to gain
ownership of the USR. It is similiar to LOCK (Section 4.3.69) in that
if successful, the user job returns with the USR in memory. However,
if a job attempts to LOCK the USR while the other job is using it, the

SYSTEM SUBROUTINE LIBRARY

requesting job is suspended until the USR is free. With ITLOCK, if
the USR is not available, control returns immediately and the lock
failure is indicated. ITLOCK cannot be called from a completion or
interrupt routine.

Form: i = ITLOCK()

For further information on gaining ownership of the USR, see the
assembly language .TLOCK request, Section 2.4.

Errors:
i=0 Normal return.
=1 USR is already in use by another job.
Example:
IF(ITLOCK().NE.O) GOTO 100 'GOTO 100 IF USR RUSY
ITTINR

4.3.51 ITTINR

The ITTINR function transfers a character from the console terminal to
the user program. If no characters are available, return is made with
an error flag set.

Form: i = ITTINR()

If the function result (i) is less than 0 when execution of the ITTINR
function is complete, it indicates that no character was available;
the user has not yet typed a valid line. Under the FB or XM monitor,
ITTINR does not return a result of less than zero unless bit 6 of the
job status word was on when the request was issued.

There are two modes of doing console terminal input. The mode is
governed by bit 12 of the job status word (JSW). The JSW is at octal
location 44. 1If bit 12 equals 0, normal I/0 is performed. In this
mode, the following conditions apply:

1. The monitor echoes all characters typed.

2. CTRL/U and RUBOUT perform 1line deletion and character
deletion, respectively.

3. A carriage return, line feed, CTRL/Z, or CTRL/C must be
struck before characters on the current line are available to
the program. When one of these is typed, characters on the
line typed are passed one by one to the user program. Both
carriage return and line feed are passed to the program.

If bit 12 equals 1, the console is in special mode. The effects are:

1. The monitor does not echo characters typed except for CTRL/C
and CTRL/O.

2. CTRL/U and RUBOUT do not perform special functions.
3. Characters are immediately available to the program.

4. No ALTMODE conversion is done.

4-76

SYSTEM SUBROUTINE LIBRARY

In special mode, the user program must echo the characters desired.
However, CTRL/C and CTRL/O are acted on by the monitor in the usual
way. Bits 12 and 14 in the JSW must be set by the user program if
special console mode or lower case characters are desired (see the
example under Section 4.3.35). These bits are cleared when control
returns to RT-11.

NOTE

To set and/or clear bits in the JSW, do
an IPEEK and then an IPOKE. 1In special
terminal mode (JSW bit 12 set), normal
FORTRAN formatted I/0 from the console
is undefined.

In the FB or XM monitor, CTRL/F and CTRL/B are not affected by the
gsetting of bit 12. The monitor always acts on these characters if the
SET TT FB command is in effect.

Under the FB or XM monitor, if a terminal input request is made and no
character is available, job execution is suspended until a character
is ready. 1If a program really requires execution to continue and
ITTINR to return a result of less than zero, it must turn on bit 6 of
the JSW before the ITTINR. Bit 6 1is cleared when a program
terminates.

NOTE

If a foreground job has characters in
the TT output buffer, they are not
output under the following conditions:

(1) If a background job is doing output
to the console TT, the foreground job
cannot output characters from its buffer
until the background job outputs a line
feed character. This can be troublesome
if the console device 1is a graphics
terminal, and the background job is
doing graphic output without sending any
line feeds.

(2) If no background job is running
(that is, KMON is in control of
background), the foreground job cannot
output its characters until the user
types a carriage return or a 1line feed.
In the former case, KMON gets control
again and locks out foreground output as
soon as the foreground output buffer is
empty.

Function Results:

i >0 Normal return; character read.
<0 Error return; no character available.
Example:
ICHAR=ITTINRC() IREAD A CHARACTER FROM THE CONSOLE

IF(ICHAR.LT.0) GOTO 100 !CHARACTER NOT AVAILAELE

4-77

SYSTEM SUBROUTINE LIBRARY

ITTOUR

4.3.52 ITTOUR

The ITTOUR function transfers a character from the user program to the
console terminal if there is room for the character in the monitor
buffer. If it is not currently possible to output a character, an
error flag is returned.

Form: 1 = ITTOUR (char)

where: char is the character to be output,
right-justified in the integer (can be
LOGICAL*1 entity if desired).

If the function result (i) is 1 when execution of the ITTOUR function
is complete, it indicates that there is no room in the buffer and that
no character was output. Under the FB or XM monitor, ITTOUR normally
does not return a result of 1. Instead, the job is blocked until room
is available in the output buffer. 1If a job really requires execution
to continue and a result of 1 to be returned, it must turn on bit 6 of
the JSW (location 44) before issuing the request.

The ITTINR and ITTOUR have been supplied as a help to those users who
do not wish to suspend program execution until a console operation is
complete. With these modes of I/0, if a no-character or no-room

condition occurs, the user program can continue processing and try the
operation again at a later time.

Errors:

i 0 Normal return; character was output.

Error return; ring buffer is full.

non
-

Example:

no 20 1=1+5
10 IFC(ITTOURC*007).NE.O) GOTO 10 'RING RELL S TIMES
20 CONTINUE

ITWAIT

4.3.53 ITWAIT (FB and XM Only)

The ITWAIT function suspends the main program execution of the current
job for a specified time interval. All completion routines continue
to execute.

Form: i = ITWAIT (itime)

where: itime is the two-word internal format time
interval.

itime (1) is the high-order time.
itime (2) is the low-order time.

SYSTEM SUBROUTINE LIBRARY

Notes:

1. ITWAIT requires a queue element; this should be considered
when the IQSET function (Section 4.3.37) is executed.

2. If the system is busy, the actual time interval for which
execution is suspended can be greater than the time interval
specified.

Errors:
i=20 Normal return.
=1 No queue element available.
Example:

INTEGERX2 TIME(2)

.

.

CALL TITWAIT(TIME) 'WAIT FOR TIME TIME

IUNTIL

4.3.54 IUNTIL (FB and XM Only)

The IUNTIL function suspends main program execution of the job until
the time of day specified. All completion routines continue to run.

Form: i = IUNTIL (hrs,min,sec,tick)

where: hrs is the integer number of hours.
min is the integer number of minutes.
sec is the integer number of seconds.
tick is the integer number of ticks (1/60 of a

second on 60-cycle clocks; 1/50 of a second
on 50-cycle clocks).

Notes:

1. 1IUNTIL requires a queue element; this should be considered
when the IQSET function (Section 4.3.37) is executed.

2. If the system is busy, the actual time of day that the
program resumes execution can be later than that requested.

Errors:
i

=
=

0 Normal return.
1 No queue element available.

Example:

c TAKE A LLUNCH BREAK
CALL TUNTIL(13+05050) 'START UF AGAIN AT 1 P.M,

4-79

SYSTEM SUBROUTINE LIBRARY

IWAIT

4.3.55 IWAIT

The IWAIT function suspends execution of the main program until all
input/output operations on the specified channel are complete. This
function is used with IREAD, IWRITE, and ISPFN calls. Completion
routines continue to execute.

Form: i = IWAIT (chan)

where: chan is the integer specification for the RT-11
channel to be used.

For further information on suspending execution of the main program,
see the assembly language .WAIT request, Section 2.4.

Errors:
i=0 Normal return.
=1 Channel specified is not open.
=2 Hardware error occurred during the previous 1I/0
operation on this channel.
Example:

IF(IWAIT(ICHAN) «.NE.O) CALL IOERR(4)

IWRITC/IWRITE/IWRITF/IWRITW

4.3.56 IWRITC/IWRITE/IWRITF/IWRITW

These functions transfer a specified number of words from memory to
the specified channel. The IWRITE functions require queue elements;
this should be considered when the IQSET function (Section 4.3.37) is
executed.

IWRITC

The IWRITC function transfers a specified number of words from memory
to the specified channel. The request is queued and control returns
to the user program. When the transfer is complete, the specified
assembly language routine (crtn) is entered as an asynchronous
completion routine.

Form: i = IWRITC (wcnt,buff,blk,chan,crtn)

where: wcnt is the relative integer number of words to be
transferred.

buff is the array to be used as the output buffer.

blk is the relative integer block number of the

file to be written. The user program
normally updates blk before it is used again.

4-80

SYSTEM SUBROUTINE LIBRARY

chan is the relative integer specification for the
RT-11 channel to be used.

crtn is the name of the assembly language routine
to be activated upon completion of the
transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine
that issues the IWRITC call.

NOTE

The blk argument must be updated, if
necessary, by the user program. For
example, if the program is writing
two blocks at a time, blk should be
updated by 2.

Errors:
i=n Normal return; n equals the number of words
written, rounded to a multiple of 256 (0 for
non-file-structured writes).
NOTE
If the word count returned 1is less than
that requested, an implied end-of-file has
occurred although the normal return is
indicated.
= -] Attempt to write past end-of-file; no more space
is available in the file.
= -2 Hardware error occurred.
= -3 Channel specified is not open.
Example:
INTEGERX2 IRUF(256)
EXTERNAL CRTN
ICODE=IWRITC(256» IRUF» IRLKy ICHAN»CRTN)
IWRITE

The IWRITE function transfers a specified number of words from memory
to the specified channel. Control returns to the user program
immediately after the request is queued. No special action is taken
upon completion of the operation.

Form: i = IWRITE (wcnt,buff,blk,chan)

where: went is the integer number of words to be
transferred.
buff is the array to be used as the output buffer.

SYSTEM SUBROUTINE LIBRARY

blk is the integer block number of the file to be
written. The user program normally updates
blk before it is used again.

chan is the integer specification for the RT-11
channel to be used.

Errors:
See the errors under IWRITC.
Example:

See the example under IREAD, Section 4.3.40.

IWRITF

The IWRITF function transfers a number of words from memory to the
specified channel. The transfer request is queued an: control returns
to the user program. When the operation is complete, the specified
FORTRAN subprogram (crtn) is entered as an asynchronous completion
routine (see Section 4.2.1).

Form: i = IWRITF (went ,buff,blk,chan,area,crtn)

where: went is the integer number of words to be
transferred.

buff is the array to be used as the output buffer.

blk is the integer block number of the file to be

written. The user program normally updates
blk before it is used again.

chan is the integer specification for the RT-11
channel to be used.

area is a four-word area to be set aside for 1link
information; this area must not be modified
by the FORTRAN program and the USR must not
swap over it. This area can be reclaimed by
other FORTRAN completion functions when crtn
has been activated.

crtn is the name of the FORTRAN routine to be
activated upon completion of the transfer.
This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues
the IWRITF call. The subroutine has two
arguments:

SUBROUTINE crtn (iargl,iarg2)

iargl is the channel status word (see
Section 2.4) for the operation just
completed. If bit 0 is set, a
hardware error occurred during the
transfer.

iarg2 is the channel number used for the
operation just completed.

4-82

SYSTEM SUBROUTINE LIBRARY

Errors:
See the errors under IWRITC.
Example:

See the example under IREADF, Section 4.3.40.

IWRITW

The IWRITW function transfers a specified number of words from memory
to the specified channel. Control returns to the user program when
the transfer is complete.

Form: i = IWRITW (wcnt,buff,blk,chan)

where: wcnt is the integer number of words to be
transferred.

buff is the array to be used as the output buffer.

blk is the integer block number of the file to be

written. The wuser program normally updates
blk before it is used again.

chan is the integer specification for the RT-11
channel to be used.

Errors:
See the errors under IWRITC.
Example:

See the example under IREADW, Section 4.3.40.

JADD
4.3.57 JADD
The JADD function computes the sum of two INTEGER*4 values.
Form: i = JADD (joprl,jopr2,jres)
where: joprl is an INTEGER*4 variable.
jopr2 is an INTEGER*4 variable.
jres is an INTEGER*4 variable that receives the
sum of joprl and jopr2.
Function Results:
i= =2 An overflow occurred while computing the result,
= -1 Normal return; the result is negative.
= 0 Normal return; the result is zero.
=] Normal return; the result is positive.

4-83

SYSTEM SUBROUTINE LIBRARY

Example:

INTEGER%4 JOF1,JOF2,JRES

*

*

IF(JADDCJOFPL Y JOFP2y JRES) JEQ.-2) GOTO 100

JAFIX

4.3.58 JAFIX
The JAFIX function converts a REAL*4 value to INTEGER*4.
Form: i = JAFIX (asrc,jres)

where: asrc is a REAL*4 variable, constant, or expression
to be converted to INTEGER*4,

jres is an INTEGER*4 variable that is to contain
the result of the conversion.

Function Results:

i= -2 An overflow occurred while computing the result.
= -1 Normal return; the result is negative.
=0 Normal return; the result is zero.
=1 Normal return; the result is positive.
Example:

INTEGER%4 JOF1

c READ A LARGE INTEGER FROM THE TERMINAL
ACCEFT 99yA

99 FORMAT (F15.0)
IF(JAFIX(AyJOF1).EQ.-2) GOTO 100

.
.

*

JCMP

4.3.59 JCmMpP

The JCMP function compares two INTEGER*4 values and returns an
INTEGER*2 value that reflects the signed comparison result.

Form: i = JCMP (joprl,jopr2)

where: joprl is the INTEGER*4 variable or array element
that is the first operand in the comparison.

jopr2 is the INTEGER*4 variable or array element
that is the second operand in the comparison.

4-84

SYSTEM SUBROUTINE LIBRARY

Function Result:
i -1 If joprl is less than jopr2

0 If joprl is equal to jopr2

1 If joprl is greater than jopr2

Example:

INTEGERX4 JOFX» JOFY

.

*

IF (JCMF (JOFXy» JOFY)) 10,20,30

JDFIX

4.3.60 JDPIX

The JDFIX function converts a REAL*8 (DOUBLE PRECISION) value to
INTEGER*4.

Form: i = JDFIX (dsrc,jres)

where: dsrc is a REAL*8 variable, constant, or expression
to be converted to INTEGER*4.

jres is an INTEGER*4 variable to contain the
conversion result.

Function Results:

i=-2 An overflow occurred while computing the result.
= -1 Normal return; the result is negative.
=0 Normal return; the result is zero.
= 1 Normal return; the result is positive.

Example:

INTEGERX4 JNUM
REAL X8 DFNUM

.

.

20 TYPE 98

98 FORMAT(’ ENTER POSITIVE INTEGER’)
ACCEFT 99,»DPNUM

9?9 FORMAT(F20.0)
IF(JOFIX(DPNUM» JNUM) .LT.0) GOTO 20

.
.

.

JDIV

4.3.61 JDI1IV

The JDIV function computes the quotient of two INTEGER*4 values.

Form: i = JDIV (joprl,jopr2,jres|,jrem])

4-85

SYSTEM SUBROUTINE LIBRARY

where: joprl is an INTEGER*4 variable that is the dividend
of the operation.
jopr2 is an INTEGER*4 variable that is divisor of
joprl.
jres is an INTEGER*4 variable that receives the

quotient of the operation (that is,
jres=joprl/jopr2).

jrem is an INTEGER*4 variable that receives the
remainder of the operation. The sign is the
same as that for joprl.

Function Results:

i= -3 An attempt was made to divide by 0.
= =2 (not used)
= -1 Normal return; the quotient is negative.
=0 Normal return; the quotient is 0.
=1 Normal return; the quotient is positive.
Example:
INTEGERX4 JN1y N2,y JQUO
CALL JDIVCJINL» N2y JQUO)
JICVT

4.3.62 JICVT
The JICVT function converts a specified INTEGER*2 value to INTEGER*4,
Form: i = JICVT (isrc,jres)

Where: isrc is the INTEGER*2 quantity to be converted.

jres is the INTEGER*4 variable or array element to
receive the result.

Function Results:

i=-1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.

Example:

INTEGERX4 JVAL
CALL JICVT(478,JVAL) 'FORM A 32-RIT CONSTANT

SYSTEM SUBROUTINE LIBRARY

JJCVT

4.3.63 JJCvT

The JJCVT function interchanges words of an INTEGER*4 value to form an
internal format time or vice versa. This procedure is necessary when
the INTEGER*4 variable is to be used as an argument in a timer-support
function such as ITWAIT. When a two-word internal format time is
specified to a function such as ITWAIT, it must have the high-order
time as the first word and the low-order time as the second word.

Form: CALL JJCVT (jsrc)

where: jsrc is the INTEGER*4 variable whose contents are
to be interchanged.
Errors:
None.
Example:

INTEGER%X4 TIME

.

.

CALL GTIM(TIME) 'GET TIME OF DAY
CALL JJCVT(TIME) 'TURN IT INTO INTEGERX4 FORMAT

JMOV

4.3.64 JMOV

The JMOV function assigns the value of an INTEGER*4 variable to
another INTEGER*4 variable and returns the sign of the value moved.

Form: i = JMOV (jsrc,jdest)

where: jsrc is the INTEGER*4 variable whose contents are
to be moved.

jdest is the INTEGER*4 variable that is the target
of the assignment.

Function Result:

The value of the function is an INTEGER*2 value that represents the
sign of the result as follows:

i=-1 Normal return; the result is negative.
= 0 Normal return; the result is 0.
=] Normal return; the result is positive.

4-87

SYSTEM SUBROUTINE LIBRARY

Example:

The JMOV function allows an INTEGER*4 quantity to be compared with 0
by using it in a logical IF statement. For example:

INTEGER%4 INT1

.

.

IFCJMOVC(INT1,INT1)) 300,100,300 !GO TO STMT 300 IF INT1 IS NOT 0

JMUL

4.3.65 JMUL
The JMUL function computes the product of two INTEGER*4 values.
Form: i = JMUL (joprl,jopr2,jres)

where joprl is an INTEGER*4 variable that is the
multiplicand.

jopr2 is an INTEGER*4 variable that is the
multiplier.

jres is an INTEGER*4 variable that receives the
product of the operation.

Function Results:

i= -2 An overflow occurred while computing the result.
= -1 Normal return; the product is negative.
=0 Normal return; the product is 0.
=1 Normal return; the product is positive.

Example:

INTEGER%4 J1,.J2,JRES

.

.

IFCIMUL (J1yJ25JRES)+1) 100510,20
C GOTO 100 IF OVERFLOW
C GOTO 10 IF RESULT IS NEGATIVE
GOTO 20 IF RESULT IS FOSITIVE OR ZERO

o

JSUB

4.3.66 JSUB

The JSUB function computes the difference between two INTEGER*4
values.

Form: i = JSUB (joprl,jopr2,jres)

where: joprl is an INTEGER*4 variable that is the minuend
of the operation.

4-88

SYSTEM SUBROUTINE LIBRARY

jopr?2

jres

Function Results:

is an INTEGER*4 variable that is the
subtrahend of the operation.

is an INTEGER*4 variable that is to receive
the difference between ioprl and iopr2 (that
is, jres=joprl-jopr2).

i==2 An overflow occurred while computing the result.
= -] Normal return; the result is negative.
= 0 Normal return; the result is 0.
=] Normal return; the result is positive.
Example:

INTEGER%X4 JOF1,JOF2,J3

.

.

CALL JSUER(JOF1,JOF2,J3)

4.3.67 JTIME

JTIME

The JTIME subroutine converts the time specified to the internal

two-word format time.

Form: CALL JTIME (hrs,min,sec,tick,time)

where: hrs
min
sec
tick
time
Errors:
None.
Example:

INTEGERX4 J1

*

.

is the integer number of hours.

is the integer number of minutes.

is the integer number of seconds.

is the integer number of ticks (1/60 of a
second for 60-cycle clocks; 1/50 of a second
for 50-cycle clocks).

is the two-word area to receive the internal

format time: time(l) is the high-order
time. time(2) is the low-order time.

C CONVERT 3 HRSy 7 MIN» 23 SECONDS TO INTEGER %4 VALUE
CALL JTIME(3y7,23,0yJ1)

CALL JJCVT(J1)

4-89

SYSTEM SUBROUTINE LIBRARY

LEN

4.3.68 LEN

The LEN function returns the number of characters currently in the
string contained in a specified array. This number is computed as the
number of characters preceeding the first null byte encountered. If
the specified array contains a null string, a value of 0 is returned.

Form: i = LEN (a)
where: a specifies the array containing the string.
Errors:
None.
Example:
LOGICALX1 STRNG(73)

.

.

TYFE 99» (STRNG(I)»I=1,LEN(STRNG))
9?9 FORMAT(’0’5132A1)

LOCK

4.3.69 LOCK

The LOCK subroutine is issued to keep the USR in memory for a series
of operations. The USR (User Service Routine) is the section of the
RT-11 system that performs various file management functions.

If all the conditions that cause swapping are satisfied, a portion of
the wuser program is written out to the disk file SWAP.SYS and the USR
is loaded. Otherwise, the USR in memory is used, and no swapping
occurs. The USR is not released until an UNLOCK (see Section 4.3.102)
is given. (Note that in an FB systenm, calling the CSI can also
perform an implicit UNLOCK.) A program that has many USR requests to
make can LOCK the USR in memory, make all the requests, and then
UNLOCK the USR; no time is spent doing unnecessary swapping.

In an FB or XM environment, a LOCK inhibits the other job from using
the USR. Thus, the USR should be 1locked only for as long as
necessary.

SYSTEM SUBROUTINE LIBRARY

NOTE

Foreground jobs perform a LOCK when they
require the USR. This can cause the USR
to be unavailable for other jobs for a
considerable period of time. The USR is
not reentrant and it cannot be shared by
other jobs. Only one job has use of the
USR at a time and other jobs requiring
it must queue up for it. This fact
should be considered for systems
requiring concurrent foreground and
background jobs. This 1is particularly
true when magtape and/or cassette are
active.

The USR does file operations, and these
operations require a sequential search
of the tape for magtape and cassette.
This could 1lock out the foreground job
for a long time while the background job
does a tape operation. The programmer
should keep this in mind when designing
such systems. The FB and XM monitors
supply the ITLOCK routine, which permits
the foreground job to check for the
availability of the USR.

Form: CALL LOCK

Note that the LOCK routine reduces time spent in file handling by
eliminating the swapping of the USR. If the USR is currently
resident, LOCK involves no I/O. (The USR is always resident in XM.)
After a LOCK has been executed, the UNLOCK routine must be executed to
release the USR from memory. The LOCK/UNLOCK routines are
complementary and must be matched. That 1is, if three LOCKs are
issued, at least three UNLOCKs must be done, otherwise the USR is not
released. More UNLOCKs than LOCKs can occur without error; the extra
UNLOCKs are ignored.

Notes:

1., It is vital that the LOCK call not come from within the area
into which the USR will be swapped. 1If this should occur,
the return from the USR request would not be to the user
program, but to the USR itself, since the LOCK function
causes part of the user program to be saved on disk and
replaced in memory by the USR. Furthermore, subroutines,
variables, and arrays in the area where the USR is swapping
should not be referenced while the USR is LOCKed in memory.

2. Once a LOCK has been performed, it is not advisable for the
program to destroy the area the USR is in, even though no
further use of the USR is required. This causes
unpredictable results when an UNLOCK is done.

3. LOCK cannot be called from a completion or interrupt routine.

4. If a SET USR NOSWAP command has been issued, LOCK and UNLOCK
do not cause the USR to swap. However, in FB, LOCK still
inhibits the other job from using the USR and UNLOCK allows
the other job access to the USR.

SYSTEM SUBROUTINE LIBRARY

5. The USR cannot accept argument lists, such as device file
name specifications, 1located in the area into which it has
been locked.

Errors:

None.

LOOKUP

4.3.70 LOOKUP

The LOOKUP function associates a specified channel with a device
and/or file for the purpose of performing I/0 operations. The channel
used is then busy until one of the following functions is executed.

CLOSEC
ISAVES
PURGE

Form: i = LOOKUP (chan,dblk[,count])

where: chan is the integer specification for the RT-11
channel to be associated with the file.

dblk is the four-word area specifying the Radix-50
file descriptor. Note that unpredictable
results occur if the USR swaps over this
four-word area.

count is an optional argumert used for the cassette
handler. This argument defaults to 0.

NOTE

The arguments of LOOKUP must be
positioned so that the USR does not
swap over them.

The handler for the selected device must be in memory for a LOOKUP.
If the first word of the file name in dblk is 0 and the device is a
file-structured device, absolute block 0 of the device is designated
as the beginning of the file. This technique, called a
non-file-structured LOOKUP, allows I/O to any physical block on the
device. If a file name is specified for a device that is not
file-structured (such as LP:FILE.TYP), the name is ignored.

NOTE

Since non-file-structured LOOKUPs allow
I/0 to any physical block on the device,
the user must be aware that, in this
mode, it is possible to overwrite the
RT-11 device directory, thus destroying
all file information on the device.

4-92

SYSTEM SUBROUTINE LIBRARY

Errors:
i=n Normal return; n equals the number of blocks in
the file (0 for non-file-structured lookups on a
cassette and magtape).
= -1 Channel specified is already open.
= =2 File specified was not found on the device.
-3 Device in use
-4 Tape drive is not available
Example:

INTEGE R¥2? DERLK(4)
DATA DRLK/3ROKO«ZRFTNy3R44 »3RDAT/

.

ICHAN=TIGETC ()

IFC(ICHAN.L.T.0) STOF ‘NO CHANNEL
IF(IFETCH(DBLK) +NE.O) STOF ‘RAD FETCH’
TF(LOOKUF (TCHAN DELK) L L.TL.0) STOF ‘RAD LOOKUF’

.

CALL CLOSECCICHAN)
CALL TFREECCICHAN)

3

MRKT

4.3.71 MRKT

The MRKT function schedules an assembly language completion routine to
be entered after a specified time interval has elapsed. Support for
MRKT in SJ requires timer support.

Form: i = MRKT (id,crtn,time)

where: id is an integer identification number to be
passed to the routine being scheduled.

crtn is the name of the assembly language routine
to be entered when the time interval elapses.
This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues
the MRKT call.

time is the two-word internal format time
interval; when this interval elapses, the
routine 1is entered. If considered as a

two-element INTEGER*2 array:
time (1) is the high-order time.

time (2) 1is the low-order time.

4-93

SYSTEM SUBROUTINE LIBRARY

Notes:

1. MRKT requires a queue element; this should be considered
when the IQSET function (Section 4.3.33) is executed.

2. If the system is busy, the time interval that elapses before

the completion routine is run can be greater than that
requested.

For further information on scheduling completion routines, see the
assembly language .MRKT request, Section 2.4.22.

Errors:
i=0 Normal return
=1 No queue element was available; unable
to schedule request.
Example:
INTEGERX2 TINT(2)
EXTERNAL ARTN
CALL MRKTC(AyARTNS TINT
MTATCH

4.3.72 MTATCH (FB and XM Only)

The MTATCH subroutine attaches a terminal for exclusive use by the

requesting job. This operation must be performed before any job can
use a terminal with multi-terminal programmed reqguests.

Form: i = MTATCH (unit[,addr])

where: addr is the optional address of an asynchronous
terminal status word. Omit this argument if
the asynchronous terminal status word is not

required. The asynchronous terminal status
word is a SYSGEN option.

unit is the logical unit number of the terminal
(lun).

Errors:
i Normal return

Non-existent unit number

Unit attached by another job

In XM monitor, the optional status word address is
not in a valid user virtual address space.

ounwo

4-94 September 1978

SYSTEM SUBROUTINE LIBRARY

MTDTCH

4.3.73 MNTDTCH (FB and XM Only)

The MTDTCH subroutine is the complement of the MTATCH subroutine. 1Its
function is to detach a terminal from a particular job, and make it
available for other jobs.

Form: i = MTDTCH (unit)

where: unit is the logical unit number of the terminal to
be detached (1lun).
Errors:
i=0 Normal return
= 2 Illegal unit number. Terminal is not attached.
= 3 Non-existent unit number.

MTGET

4.3.74 MNTIGET (FB and XM Only)

The MTGET subroutine furnishes the user with information about a
specific terminal in a multi-terminal system.

Form: i = MTGET (unit,addr)

where: addr is a four-word area to receive the status
information. The area 1is a four-element
INTEGER*2 array. See Section 2.4.36 for area

format.
unit is the unit number of the line and terminal
whose status is desired.
Errors:
i=0 Normal return

= 2 Unit not attached

= 3 Non~-existent unit number

= 6 In XM monitor, the terminal status buffer address

is outside legal program limits.

MTIN

4.3.75 MTIN (PB and XM Only)

The MTIN subroutine transfers characters from a specified terminal to
the user program. This subroutine is a multi-terminal form of ITTINR.
If no characters are available, a flag is set to indicate an error
upon return from the subroutine. If no character count argument is
specified, one character is transferred.

4-95

SYSTEM SUBROUTINE LIBRARY

Form: i = MTIN (unit,char(,chrcnt])
where: unit is the unit number of the terminal.

char is the variable to contain the characters
read in from the terminal indicated by the
unit number.

chrent is an optional argument that indicates the
number of characters to be read.

Errors:

Normal return

No input available

Unit not attached
Non-existent unit number

i

WO

MTOUT

4.3.76 MTOUT (FB and XM Only)

The MTOUT subroutine transfers characters to a specified terminal.
This subroutine is a multi-terminal form of ITTOU. If no room is
available in the output ring buffer, a flag is set to indicate an
error upon return from the subroutine. If no character count argument
is specified, one character is transferred.

Form: i = MTOUT (unit,char[,chrcnt])
where: unit is the unit number of the terminal.
char is the variable containing the characters to

be output, right-justified in the integer
(can be LOGICAL*1 if desired).

chrcnt is an optional argument that indicates the
number of characters to be output.
Errors:
i=0 Normal return
i=1 No room in output ring buffer.
i=2 Unit not attached
i=3 Non-existent unit number
MTPRNT

4.3.77 MTPRNT (FB and XM Only)

The MTPRNT subroutine operates the same as the PRINT subroutine
(Section 4.3.81) in a multi-terminal environment. It allows output to
be printed at the console terminal (see Section 2.4 for more details)

Form: i = MTPRNT (unit,string)

4-96

SYSTEM SUBROUTINE LIBRARY

where: string is the character string to be printed. Note
that all quoted 1literals used in FORTRAN
subroutine calls are in ASCIZ format. All
character strings produced by the SYSF4
string handling package are also in the ASCIZ

format.
unit is the unit number associated with the
terminal.
Errors:
i=0 Normal return
i=2 Unit not attached
i=3 Non-existent unit number

MTRCTO

4.3.78 MTRCTO (FB and XM Only)

The MTRCTO subroutine operates the same as the .RCTRLO programmed
request in a multi-terminal environment. This request resets the
CTRL/O command originated at the console terminal.

Form: i = MTRCTO (unit)

where: unit is the unit number associated with the
terminal.
Errors:
i=0 Normal return
= 2 Unit not attached
= 3 Non-existent unit number

MTSET

4.3.79 MTSET (FB and XM Only)

The MTSET subroutine allows the user program to set terminal and
line characteristics. (See .MTSET program request in Chapter 2 for
more details.)

Form: i = MTSET (unit,addr)

where: addr is a four-word area to pass the status
information. The area is a four-element
INTEGER*2 array. See Section 2.4 for area
format.

unit is the unit number of the line and terminal
whose characteristics are to be changed.

Errors:

Normal return
Unit not attached
Non-existent unit number

nmnon
wNhno

4-97

SYSTEM SUBROUTINE LIBRARY
= 6 In the XM monitor, the terminal status buffer
address is outside legal program limits.

Example:

PROGRAM MUL.TEM
c MULTEM.FOR SYSF4 TEST FOR MULTI-TERMINAL ROUTINES

c
DIMENSION IADDR(2,4) "(IUNIT»STATUS WD)
LOGICALX1 FROMFPT(8), ISTRNG(134)
c DATA PROMPT/ ‘S’ s T/ 3 R’» "I’ 9'N’y"G" s’ »*200/
CALL FRINT (’THE FOLLOWING NUMBERS ACTIVATE CERTAIN FUNCTIONS’)
CALL PRINT (‘1 = MTSET’)
CALL PRINT (’2 = MTGET’)
CALL FRINT (’3 = MTIN’)
CALL PRINT (‘4 = MTOUT')
CALL FRINT (‘S = MTRCTO’)
CALL PRINT (’6 = MTATCH’)
CALL PRINT (‘7 = MTDTCH’)
CALL FRINT (’8 = MTFRNT’)
5 TYPE 19
ACCEFT 8sIFUN 'GET FUNCTION TO DO
GOTO (100,20053005400550056005,700,800)» IFUN
C

100 TYPE 109

109 FORMAT (’$SETUF TERMINAL STATUS BLOCKsSTATUS WORD 1 7 *)
ACCEFT 9y IADDRC(IUNIT»1)
IADDR(IUNIT»2) = O
TYPE 129

129 FORMAT (’$FILLER CHARACTER 7 ’)
ACCEFT 9, J
TYPE 139

139 FORMAT (’$NUMBER OF FILLERS ?)
ACCEFPT 8»1I
IADDR(IUNIT»3)=I%256 + J
TYFE 149

149 FORMAT (’$CARRIAGE WIDTH ?)
ACCEFPT 8,
TYFE 159

159 FORMAT (‘$STATE BRYTE ? /)
ACCEFT 8»1
IADDR(IUNIT»4) = IX256 + J
IERR = MTSET (IUNIT» IADDRC(IUNITy1))
GOTO 999

200 IERR = MTGET (IUNIT» IADDRCIUNIT,1))
TYPE 209y (IADDRC(IUNIT»I)»I=1,4)

209 FORMAT (’ 4 WORD STATUS BLK IS:!’,406)
GOTO 999

300 IERR = MTIN (IUNIT, ICHAR)
305 TYFE 309y ICHAR
309 FORMAT (‘ ICHAR=',A1l)

GOTO 999

c

400 IERR = MTOUT (IUNIT» ICHAR)
GOTO 305

C

500 IERR = MTRCTO (IUNIT)
GOTO 999

c

600 TYPE 609

SYSTEM SUBROUTINE LIBRARY

609 FORMAT (’$SIUNIT ? /)
ACCEFPT 8y IUNIT
TYFE 619
619 FORMAT (’$ASYNCHRONOUS WORD 7 ‘)
ACCEPT 9,IASYN
IERR = MTATCH (IUNIT, IASYN)

GOTO 999

c

700 IERR = MTDTCH (IUNIT)
GOTO 999

c

800 CALL GTLIN (ISTRNGyPROMFT)
IERR = MTPRNT (IUNITsy ISTRNG)
999 TYFE 998»IERR
GOTO S

8 FORMAT (I4)

9 FORMAT (062

19 FORMAT (’$FUNCTION 7 /)

998 FORMAT (’ IERR =’,I4)
END

MWAIT

4.3.80 MWAIT (FB and XM Only)

The MWAIT subroutine suspends main program execution of the current
job until all messages sent to or from the other job have been
transmitted or received. It provides a means for ensuring that a
required message has been processed. MWAIT 1is used primarily in
conjunction with the IRCVD and ISDAT calls, where no action is taken
when a message transmission is completed. This subroutine requires a
queue element; this should be considered when the IQSET function
(Section 4.3.37) is executed.

Form: CALL MWAIT
Errors:

None.

Example:

See the example under ISDAT, Section 4.3.45.

PRINT

4.3.81 PRINT

The PRINT subroutine causes output (from a specified string) to be
printed at the console terminal. This routine can be used to print
messages from completion routines without using the FORTRAN formatted
I/0 system. Control returns to the user program after all characers
have been placed in the output buffer.

The string to be printed can be terminated with either a null (0) byte
or a 200 (octal) byte. If the null (ASCIZ) format is used, the output
is automatically followed by a carriage return/line feed pair (octal

SYSTEM SUBROUTINE LIBRARY

15 and 12). If a 200 byte terminates the string, no carriage
return/line feed pair is generated.

In the FB monitor, a change in the job that is controlling terminal
output is indicated by a B> or F>. Any text following the message has
been printed by the job indicated (foreground or background) until
another B> or F> is printed. When PRINT is used by the foreground
job, the message appears immediately, regardless of the state of the

background job. Thus, for urgent messages, PRINT should be used
rather than ITTOUR.

Form: CALL PRINT (string)

where: string is the string to be printed. Note that all
quoted 1literals used in FORTRAN subroutine
calls are in ASCIZ format as are all strings
produced by the SYSF4 string handling

package.
Errors:
None.
Example:
CALL FRINT (’THE COFFEE IS READY’)
PURGE

4.3.82 PURGE

The PURGE subroutine is used to deactivate a channel without
performing an ISAVES or a CLOSEC. Any tentative file currently
associated with the channel is not made permanent. This subroutine is
useful for keeping ENTERed (IENTER or .ENTER) files from becoming
permanent directory entries.

Form: CALL PURGE (chan)

where: chan is the integer specification for the RT-11
channel to be deactivated.
Errors:
None.
Example:

See the example under IENTER, Section 4.3.22.

PUTSTR

4.3.83 PUTSTR

The PUTSTR subroutine writes a variable-length character string to a
specified FORTRAN logical unit. PUTSTR can be used in main program
routines or in completion routines but not in both in the same program
at the same time. If PUTSTR is used in a completion routine, it must
not be the first I/0 operation on the specified logical unit.

4-100

SYSTEM SUBROUTINE LIBRARY

Form: CALL PUTSTR (lun,in,char,err)

where: lun is the integer specification of the FORTRAN
logical unit number to which the string is to
be written.

in is the array containing the string to be
written.
char is an ASCII character that is appended to the

beginning of the string before it is output.
If 0, the first character of in is the first
character of the record. This character is
used primarily for carriage control purposes
(see Section 4.3.13).

err is a LOGICAL*1 variable that is .TRUE for an
error condition and .FALSE for a no error
condition.
Errors:
ERR = -1 End-of-file for write operation
-2 Hardware error for write operation
Example:

LOGICAL%1 STRNG(81)

.

.

CALL FUTSTR(7ySTRNG»“0’) 10UTFUT STRING WITH DOUBLE SFACING

R50ASC

4.3.84 R50ASC

The RS50ASC subroutine converts a specified number of Radix-50
characters to ASCII.

Form: CALL R50ASC (icnt,input,output)

where: icnt is the integer number of ASCII characters to
be produced.

input is the area from which words of Radix-50
values to be converted are taken. Note that
(icnt+2) /3 words are read for conversion.

output is the area into which the ASCII characters
are stored.

Errors:
If an input word contains illegal Radix-50 codes (that is, if the

input word is greater (unsigned) than 174777 (octal)), the routine
outputs question marks for the value.

4-101

SYSTEM SUBROUTINE LIBRARY

Example:
REAL X8 NAME
LOGICALX1 QUTF(12)
CALL RSOASC(12yNAME,OUTP)
RADSO

4.3.85 RADS0

The RADS0 function provides a method of encoding RT-11 file
descriptors in Radix-50 notation. The RAD50 function converts six
ASCII characters from the specified area, returning a REAL*4 result
that is the two-word Radix-50 value.

Form: a = RADS0 (input)

where: input is the area from which the ASCII input
characters are taken.

The RADS50 call:
A = RAD50 (LINE)

is exactly equivalent to the IRADS50 call:
CALL IRADS50 (6,LINE,A)

Function Results:

The two-word Radix-50 value is returned as the function result.

RCHAIN

4.3.86 RCHAIN

The RCHAIN subroutine allows a program to determine whether it has
been chained to and to access variables passed across a chain. If
RCHAIN is used, it must be used in the first executable FORTRAN
statement in a program. RCHAIN cannot be called from a completion or
interrupt routine.

Form: CALL RCHAIN (flag,var,wcnt)

where: flag is an integer variable that is set to -1 if
the program has been chained to; otherwise,

it is 0.
var is the first variable in a sequence of

variables with increasing memory addresses to
receive the information passed across the
chain (see Section 4.3.2).

4-102

SYSTEM SUBROUTINE LIBRARY

wcnt is the number of words to be moved from the
chain parameter area to the area specified by
var. RCHAIN moves wcnt words into the area
beginning at var.

Errors:
None.

Example:

INTEGERX2 FARMS(30)
CALL RCHAINCIFLAGsFARMS»SO0)
IF(IFLAG) GOTO 10 'GOTO 10 IF CHAINED TO

3

RCTRLO

4.3.87 RCTRLO

The RCTRLO subroutine resets the effect of any console terminal CTRL/O
command that was typed. After an RCTRLO call, any output directed to
the console terminal prints until another CTRL/O is typed.

Form: CALL RCTRLO

Brrors:

None.

Example:

CALL RCTRLO
CALL PRINT (’THE REACTOR IS ABOUT TO ELOW UF‘)

REPEAT

4.3.88 REPEAT

The REPEAT subroutine concatenates a specified string with itself to
produce the indicated number of copies. REPEAT places the resulting
string in a specified array.

Form: CALL REPEAT (in,out,i[,len[,err]])

where: in is the array containing the string to be
repeated.
out is the array into which the resultant string

is placed. This array must be at least one
element longer than the value of len, if
specified.

i is the integer number of times to repeat the
string.

4-103

SYSTEM SUBROUTINE LIBRARY

len is the integer number representing the
maximum length of the output string.

err is the logical error flag set if the output
string is truncated to the length specified
by len.

Input and output strings can specify the same array only if the repeat
count (i) is 1 or 0. When the repeat count is 1, this routine is the
equivalent of SCOPY; when the repeat count is 0, out is replaced by a

null string. The o0ld contents of out are lost when this routine is
called.

Errors:

Error conditions are indicated by err, if specified. If err is given
and the output string would have been longer than len characters, then
err is set to .TRUE.; otherwise, err is unchanged.

Example:
LOGICAL%1 SIN(21),S0UT(101)
CALL REFEAT(SIN»SOUT»S)
RESUME

4.3.89 RESUME (FB and XM Only)

The RESUME subroutine allows a job to resume execution of the main
program. A RESUME call is normally issued from an asynchronous
FORTRAN routine entered on I/O completion or because of a schedule
request. (See Section 4.3.97 for more information.)

Form: CALL RESUME

Errors:

None.

Example:

See the example under SUSPND, Section 4.3.97.

SCCA

4.3.90 scca

The SCCA subroutine provides a CTRL/C intercept to perform the
following functions:

1. Inhibit a CTRL/C abort
2. 1Indicate that a CTRL/C command is active

3. Distinguish between single and double CTRL/C commands

4-104

SYSTEM SUBROUTINE LIBRARY

Form: CALL SCCA [(iflag)]

where: iflag is an integer terminal status word that must
be tested and cleared to determine if two
CTRL/Cs were typed at the console terminal.
The iflag must be an INTEGER*2 variable (not
LOGICAL*]l).

When a CTRL/C is typed, the SCCA subroutine, having been previously
called, makes the CTRL/C command inactive and places it in the input
ring buffer. While residing in the buffer, the inactive command can
be read as a valid character by the program. The program must test
and clear the iflag to determine if two CTRL/C commands were typed
consecutively. The iflag is set to non-zero when\two CTRL/Cs are
typed together. It is the responsibility of the program to abort
itself, if appropriate, on an input of CTRL/C from the terminal. The
SCCA subroutine with no argument disables the CTRL/C intercept.

Errors:
None

Example:

PROGRAM SCCA
(> SCCA.FOR SYSF4 TEST FOR SCCA

c
CALL PRINT (’FPROGRAM HAS STARTED, TYFE')
IFLAG=0
CALL SCCA (IFLAG)

10 I = ITTINRC) IGET A CHARACTER

IF (I .NE. 3) GOTO 10
c A CTRL/C WAS TYFED
CALL PRINT (‘A CTRL/C WAS TYFED')
IF (IFLAG .EQ. 0) GOTO 10
CALL PRINT (‘A DOUBRLE CTRL/C WAS TYFED'')
TYPE 19»IFLAG
19 FORMAT (’ IFLAG = “506+/)

CALL SCCA 'DISARLE CTRL/C INTERCEFT
CALL PRINT (‘TYFE A CTRL/C TO EXIT’)

20 GOTO 20 'LOOF UNTIL CTRL/C TYFED
END

SCOMP

4.3.91 SCOMP

The SCOMP routine compares two character strings and returns the
integer result of the comparison.

Form: CALL SCOMP (a,b,i)
or
i = ISCOMP (a,b)
where: a is the array containing the first string.

b is the array containing the second string.

4-105

SYSTEM SUBROUTINE LIBRARY

i is the integer variable that receives the
result of the comparison.

The strings are compared left to right, one character at a time, using
the collating sequence specified by the ASCII codes for each
character. 1If the two strings are not equal, the absolute value of
variable i (or the result of the function ISCOMP) is the character
position of the first inequality found in scanning left to right.
Strings are terminated by a null (0) character.

If the strings are not the same length, the shorter one is treated as
if it were padded on the right with blanks to the length of the other

string. A null string argument is equivalent to a string containing
only blanks.

Function Result:

i <0 if a is less than b
=0 if a is equal to b
>0 if a is greater than b
Example:

LOGICALX1 INSTR(81)

.

CALL GETSTR(SyINSTR»80)
CALL SCOMF(‘YES’,»INSTRyIVAL)
IF(IVAL) GOTO 10 'IF INFUT STRING IS NOT YES GOTO 10

SCOPY

4.3.92 SCOPY

The SCOPY routine copies a character string from one array to another.
Copying stops either when a null (0) character is encountered or when
a specified number of characters have been moved.

Form: CALL SCOPY (in,out[,len[,err]])

where: in is the array containing the string to be
copied.
out is the array to receive the copied string.

This array must be at 1least one element
longer than the value of len, if specified.

len is the integer number representing the
maximum length of the output string. The
effect of 1len is to truncate the output
string to a given length, if necessary.

err is a logical variable that receives the error
indication if the output string was truncated
to the length specified by len.

The input (in) and output (out) arguments can specify the same array.

The string previously contained in the output array is lost when this
subroutine is called.

4-106

SYSTEM SUBROUTINE LIBRARY

Errors:

Error conditions are indicated by err, if specified. If err is given
and the output string was truncated to the length specified by len,
then err is set to .TRUE.; otherwise, err is unchanged.

Example:

SCOPY is useful for initializing strings to a constant value, for
example:

LOGICALX1 STRING(80)
CALL SCOPY(’THIS IS THE INITIAL VALUE’»STRING)

SECNDS

4.3.93 SECNDS

The SECNDS function returns the current system time, in seconds past
midnight, minus the value of a specified argument. Thus, SECNDS can
be used to calculate elapsed time. The value returned is
single-precision floating point (REAL*4).

Form: a = SECNDS (atime)

where: atime is a REAL*4 variable, constant, or expression
whose value 1is subtracted from the current
time of day to form the result.

Notes:

This function does floating-point arithmetic. Elapsed time can also
be calculated by wusing the GTIM call and the INTEGER*4 support
functions.

Function Result:

The function result (a) is the REAL*4 value returned. Example:

c START OF TIMED SEQUENCE
T1=SECNDS(0.)

CODE TO BE TIMED GOES HERE

o000

DELTA=SECNDS(T1) IDELTA IS ELAFSED TIME

SETCMD

4.3.94 SETCMD

The SETCMD routine allows a user program to pass a command line to the
keyboard monitor to be executed after the program exits. The command
lines are passed to the chain information area (500-777(octal)) and
stored beginning at 1location 512(octal). No check 1is made to
determine if the string extends into the stack space. For this
reason, the command 1line should be short and the subroutine call
should be made in the main program unit near the end of the program
just before completion. If several commands are desired to be

4-107

SYSTEM SUBROUTINE LIBRARY

executed, an indirect command file that contains many command lines
should be used.

The following monitor commands are disallowed if the SETCMD feature is
used.

1. REENTER
2. START
3. CLOSE

Form: CALL SETCMD (string)
where: string is a keyboard monitor command line in ASCIZ
format with no embedded carriage returns or
line feeds.
Errors
None
Example:
LOGICALX1 INFUT(134),FROMFT(8)
DATAPROHPT/’P’;'R'r’O’,’H'y’P’y’T’,'ﬁ’y'QOO/

CALL GTLIN C(INPUT,FROMFT)
CALL SETCMD C(INFUT)

END
NOTE
Set USR NOSWAP or specify /NOSWAP with
the COMPILE, FORTRAN, or EXECUTE
command.
STRPAD

4.3.95 STRPAD

The STRPAD routine pads a character string with rightmost blanks until
that string is a specified length. This padding is done in place;
the result string is contained in its original array. If the present
length of the string is greater than or equal to the specified length,
no padding occurs.

Form: CALL STRPAD (a,i[,err])

where: a is the string to be padded.
i is the integer length of the desired result
string.
err is the logical error flag that is set to

.TRUE. if the string specified by a exceeds
the value of i in length.

4-108

SYSTEM SUBROUTINE LIBRARY

Errors:

Error conditions are indicated by err, if specified. 1If err is given
and the string indicated is longer than i characters, err is set to
.TRUE.; otherwise, the value of err is unchanged.

Example:

This routine is especially useful for preparing strings to be output
in A-type FORMAT fields. For example:

LOGICAL%1 STR(81)

*

.

*
CALL STRPAD(STR»80) TASSURE 80 VALID CHARACTERS

PRINT 1005 (STR(I)»I=1,80) !PRINT STRING OF 80 CHARACTERS
100 FORMAT(80A1)

SUBSTR

4.3.96 SUBSTR

The SUBSTR routine copies a substring from a specified position in a
character string. If desired, the substring can then be placed in the
same array as the string from which it was taken.

Form: CALL SUBSTR (in,out,i,len])

where: in is the array from which the substring is
taken.
out is the array to contain the substring result.

This array must be one element longer than
len, if specified.

i is the integer character position in the
input string of the first character of the
desired substring.

len is the integer number of characters
representing the maximum length of the
substring.

If a maximum length (len) is not given, the substring contains all
characters to the right of character position i in array in. 1If len
is equal to zero, out 1is replaced by the null string. The old
contents of array out are lost when this routine is called.

Errors:

None.

4-109

SYSTEM SUBROUTINE LIBRARY

SUSPND

4.3.97 SUSPND (FB and XM Only)

The SUSPND subroutine suspends main program execution of the current

job and allows only completion routines (for I/0 and scheduling
requests) to run.

Form: CALL SUSPND

Notes:

1. The monitor maintains a suspension counter for each job.
This count is decremented by SUSPND and incremented by RESUME
(see Section 4.3.81). A job will actually be suspended only
if this counter is negative. Thus, if a RESUME is issued
before a SUSPND, the latter function will return immediately.

2. A program must issue an equal number of SUSPNDs and RESUMES.

3. A RESUME subroutine call from the main program or from a
completion routine increments the suspension counter.

4. A SUSPND subroutine call from a completion routine decrements
the suspension counter but does not suspend the main program.
If a completion routine does a SUSPND, the main program
continues wuntil it also issues a SUSPND, at which time it is
suspended and requires two RESUMEs to proceed.

5. Because SUSPND and RESUME are used to simulate an ITWAIT (see
Section 4.3.45) in the monitor, a RESUME issued from a
completion routine and not matched by a previously executed
SUSPND can cause the main program execution to continue past
a timed wait before the entire time interval has elapsed.

For further information on suspending main program execution of the
current job, see the assembly language .SPND request, Section 2.4.

Errors:
None.
Example:
INTEGER IAREA(4)
COMMON /RDELK/ IRUF(256)
EXTERNAL RIFIN
IF C(IREADF (256 IRUFy IRLK» ICHANY IAREAYRDFIN) .NE.O) GOTO 1000
[GOTO 1000 FOR ANY TYFE OF ERROR
()
C D0 OVERLAFFED FROCESSING

*

.

CALL SUSFND !SYNCHRONIZE WITH COMFLETION ROUTINE

*

END

4-110

SYSTEM SUBROUTINE LIBRARY

SUBROUTINE RDFIN(IARG1sIARG2)
COMMON /RDELK/ IBUF(256)

*

*

CALL RESUME

.

*

END

4.3.98 TIMASC

ICONTINUE MAIN FROGRAM

TIMASC

The TIMASC subroutine converts a two-word internal format time into an

ASCII string of the form:

hh:mm:ss
where: hh
mm

Ss

is the two-digit hours indication
is the two-digit minutes indication

is the two-digit seconds indication

Form: CALL TIMASC (itime,strng)

where: itime
strng
Errors:
None.
Example:

is the two-word internal format time to be
converted. itime (1) is the high-order time.
itime (2) is the low-order time.

is the eight-element array to contain the
ASCII time.

The following example determines the amount of time until 5 p.m. and

prints it.

INTEGERX4 J1,J2,J3
LOGICALX1 STRNG(8)

.

.

CALL JTIME(1750,050yJ1)

CALL GTIMJ2)
CALL JJCVT(J1)
CALL JJCVT(J2)

CALL JSUR(J1yJ2,U3)

CALL JJCVT I3

CALL TIMASC(J3»STRNG)
TYPE 995 (STRNG(I)»I=1,8)

9?9 FORMAT(’ IT IS

.

.

‘*BAly’ TILL 5 P.M.")

4-111

SYSTEM SUBROUTINE LIBRARY

TIME

4.3.99 TIME

The TIME subroutine returns the current system time of day as an
eight-character ASCII string of the form:

hh:mm:ss

where: hh is the two-digit hours indication
mm is the two-digit minutes indication
ss is the two-digit seconds indication

Form: CALL TIME (strng)

where: strng is the eight-element array to receive the
ASCII time.

Notes:

A 24-hour clock is used (for example, 1:00 p.m. is represented as
13:00:00). The DATE and IDATE subroutines are available as part of
FORTRAN IV system routines.

Errors:
None.
Example:

LOGICAL%1 STRNG(8)

.

*

CALL TIME(STRNG)
TYFE 99y (STRNG(I)»yI=1,8)
99 FORMAT (7 IT IS NOW ‘,»8A1)

TRANSL

4.3.100 TRANSL

The TRANSL routine performs character translation on a specified
string. The TRANSL routine requires approximately 64 words on the Ré6
stack for its execution. This space should be considered when
allocating stack space.

Form: CALL TRANSL (in,out,r(,p])

where: in is the array containing the input string.
out is the array to receive the translated
string.

4-112

SYSTEM SUBROUTINE LIBRARY

r is the array containing the replacement
string.
p is the array containing the characters in in

to be translated.

The string specified by array out is replaced by the string specified
by array in, modified by the character translation process specified
by arrays r and p. If any character position in 1in contains a
character that appears in the string specified by p, it is replaced in
out by the corresponding character from string r. If the array p is
omitted, it 1is assumed to be the 127 seven-bit ASCII characters
arranged in ascending order, beginning with the character whose ASCII
code is 001. If strings r and p are given and differ in length, the
longer string is truncated to the 1length of the shorter. If a
character appears more than once in string p, only the last occurrence
is significant. A character can appear any number of times in string
r.

Errors:

None.

Examples:

The following example causes the string in array A to be copied to
array B. All periods within A become minus signs, and all question
marks become exclamation points.

CALL TRANSL(As»Ry ‘1797 ?’)

The following is an example of TRANSL being used to format character
data.

LOGICALX1 STRING(27)»RESULT(27)yPATRN(27)

C SET UP THE STRING TO BE REFORMATTED
Cc
CALL SCOPY(‘'THE HORN BLOWS AT MIDNIGHT‘»STRING)
Cc
Cc 00000000011111111112222222
c 12343678901234567890123456
C THE HORN BLOWS AT MIDNIGHT
Cc NOW SET UP FATRN TO CONTAIN THE FOLLOWING PATTERN?
c 169179181199209219229239249259269159192939495+96979879910511,12513,1450
Cc
DO 10 1I=16+26
10 PATRN(I-15)=1I
PATRN(12)=15
DO 20 I=1,14
20 PATRN(I+12)=1
PATRN(27)=0
Cc
Cc THE FOLLOWING CALL TO TRANSL REARRANGES THE CHARACTERS OF
Cc THE INPUT STRING TO THE ORDER SPECIFIED RY FATRN?
c
CALL TRANSL(PATRN»RESULT»STRING)
Cc
Cc RESULT NOW CONTAINS THE STRING ‘AT MIDNIGHT THE HORN ELOWS’
Cc IN GENERAL» THIS METHOD CAN BE USEDR TO FORMAT INFUT STRINGS
c OF UP TO 127 CHARACTERS. THE RESULTANT STRING WILL ERE
Cc AS LONG AS THE PATTERN STRING (AS IN THE AROVE EXAMFLE).

4-113

SYSTEM SUBROUTINE LIBRARY

TRIM

4.3.101 TRIM

The TRIM routine shortens a specified character string by removing all
trailing blanks. A trailing blank is a blank that has no non-blanks
to its right. If the specified string contains all blank characters,

it is replaced by the null string. If the specified string has no
trailing blanks, it is unchanged.

Form: CALL TRIM (a)

where: a is the array containing the string to be
trimmed.
Errors:
None.
Example:

LOGICAL*1 STRING(81)
ACCEFT 100 (STRING(I)>»I=1,80)
100 FORMAT(80A1)

CALL SCOFY(STRING»STRING»80) 'MAKE ASCIZ
CALL TRIM(STRING) 'TRIM TRAILING BLANKS
UNLOCK

4.3.102 UNLOCK

The UNLOCK subroutine releases the User Service Routine (USR) from
memory if it was placed there by the LOCK routine. If the LOCK
required a swap, the UNLOCK loads the user program back into memory.

If the USR does not require swapping, the UNLOCK involves no I/0. The
USR is always resident in XM.

Form: CALL UNLOCK

Notes:

1. It is important that at least as many UNLOCKS are given as
LOCKs. If more LOCKs were done, the USR remains locked in
memory. It is not harmful to give more UNLOCKS than are
required; those that are extra are ignored.

2. When running two jobs in the FB system, use the LOCK/UNLOCK
pairs only when absolutely necessary. If one job LOCKs the
USR, the other job cannot use the USR until it is UNLOCKed.
Thus, the USR should not be LOCKed unnecessarily, as this may
degrade performance in some cases.

3. In an FB system, calling the CSI (ICSI) with input coming
from the console terminal performs an implicit UNLOCK.

For further information on releasing the USR from memory, see the
assembly language .LOCK/.UNLOCK requests, Section 2.4.

4-114

SYSTEM SUBROUTINE LIBRARY

Errors:
None.

Example:

*

*

Cc GET READY TO DO MANY USR OFERATIONS
CALL LOCK IDISARLE USR SWAFFING
c PERFORM THE USR CALLS

*
*

.

c FREE THE USR
CALL UNLOCK
.

.

VERIFY

4.3.103 VERIFY

The VERIFY routine determines whether each character of a specified
string occurs anywhere in another string. If a character does not
exist in the string being examined, VERIFY returns its character
position in string b. If all characters exist, VERIFY returns a 0.

Form: CALL VERIFY (a,b,i)
or

i = IVERIF (a,b)

where: a is the array containing the string to be
scanned.
b is the array containing the string of

characters to be accepted in a.

i is the integer result of the verification.

Function Result:

i=0 if all characters of a exist in b; also if a is a
null string.
= n where n is the character position of the first

character in a that does not appear in b; if b is
a null string and a is not, i equals 1.

4-115

Example:

SYSTEM SUBROUTINE LIBRARY

The following example accepts a one- to five-digit unsigned
number and returns its value.

9?9

LOGICALX1 INSTR(81)

.

*

CALL VERIFY(INSTR(IFOS)» ‘0123456789 ,1)
IF(I.EQ.1) STOF ‘NUMBER MISSING-’
IF(I.EQ.0) I=LENCINSTR)-IFPOS+1
IF(I.GT.S) STOF ‘TOO MANY DIGITS-
NUM=IVALUEC(INSTR(IFOS)» 1)

END

FUNCTION IVALUE(ARRAY,I)
LOGICAL X1 ARRAY(1)
DECODE(I»99yARRAY) IVALUE

FORMAT (I5)
END

4-116

decimal

APPENDIX A

DISPLAY FILE HANDLER

This appendix describes the assembly language support provided under
RT-11 for the VT1ll graphic display hardware systems.

The following manuals are suggested for additional reference:

GT40/GT42 User's Guide
- -002

GT44 User's Guide
EK-GT44-0P-001

VTll Graphic Disglax Processor
- -TH_

DECGRAPHIC-11 GT Series Reference Card
EH-0 4-773

DECGraphic-11 FORTRAN Reference Manual
DEC-1I-GFRMA-A-D

BASIC-11 Graphics Extensions User's Guide

—_—'—Bgsm - -A-D

A.1 DESCRIPTION

The graphics display terminals have hardware configurations that
include a display processor and CRT (cathode ray tube) display. All
systems are equipped with light pens and hardware character and vector
generators, and are capable of high-quality graphics. The Display
File Handler supports this graphics hardware at the assembly 1language
level under the RT-11 monitor.

DISPLAY FILE HANDLER

A.l1.1 Assembly Language Display Support

The Display File Handler is not an RT-11 device handler, since it does
not use the 1I/0 structure of the RT-11 monitor. For example, it is
not possible to use a utility program to transfer a text file to the
display through the Display File Handler. Rather, the Display File
Handler provides the graphics programmer the means for the display of
graphics files and the easy management of the display processor.
Included in its capabilities are such services as interrupt handling,
light pen support, tracking object, and starting and stopping of the
display processor.

The Display File Handler manages the display processor by means of a
base segment (called VTBASE) which contains interrupt handlers, an
internal display file and some pointers and flags. The display
processor cycles through the internal display file; any user graphics
files to be displayed are accessed by display subroutine calls from
the Handler's display file. In this way, the Display File Handler
exerts control over the display processor, relieving the assembly
language user of the task.

Through the Display File Handler, the programmer can insert and remove
calls to display files from the Handler's internal display file. Up
to two user files may be inserted at one time, and that number may be
increased by re-assembling the Handler. Any user file inserted for
display may be blanked (the subroutine call to it bypassed) and
unblanked by macro calls to the Display File Handler.

Since the Handler treats all user display files as graphics
subroutines to its internal display file, a display processor
subroutine call is required. This is implemented with software, using
the display stop instruction, and is available for user programs.
This instruction and several other extended instructions implemented
with the display stop instruction are described in Section A. 3.

The facilities of the Display File Handler are accessed through a file
of macro definitions (VIMAC) which generate calls to a set of
subroutines in VTLIB. VTMAC's call protocol is similar to that of the
RT-11 macros. The expansion of the macros is shown in Section A.6.
VTMAC also contains, for convenience in programming, the set of
recommended display processor instruction mnemonics and their values.
The mnemonics are listed in Section A.7 and are used in the examples
throughout this appendix.

VICAL]l through VTCAL4 are the set of subroutines which service the
VTMAC calls. They include functions for display file and display
processor management. These are described in detail in Section A.2.
VTCAL1 through VTCAL4 are distributed, along with the base segment
VTBASE, as a file of five object modules called VTHDLR.OBJ. VTHDLR is
built into the graphics library VTLIB by using the monitor LIBRARY
command. Section A.4.2 shows an example.

DISPLAY FILE HANDLER

A.1.2 Monitor Display Support

The RT-11 monitor, under Version 03, directly supports the display as
a console device. A keyboard monitor command, GT ON (GT OFF) permits
the selection of the display as console device. Selection results in
the allocation of approximately l.25K words of memory for text buffer
and code. The buffer holds approximately 2000 characters.

The text display includes a blinking cursor to indicate the position
in the text where a character is added. The cursor initially appears
at the top left corner of the text area. As lines are added to the
text the cursor moves down the screen. When the maximum number of
lines are on the screen, the top line is deleted from the text buffer
when the 1line feed terminating a new line is received. This causes
the appearance of "scrolling", as the text disappears off the top of
the display.

When the maximum number of characters have been inserted in the text
buffer, the scroller logic deletes a line from the top of the screen
to make room for additional characters. Text may appear to move
(scroll) off the top of the screen while the cursor is in the middle
of a line.

The Display File Handler can operate simultaneously with the scroller
program, permitting graphic displays and monitor dialogue to appear on
the screen at the same time. It does this by inserting its internal
display file into the display processor loop through the text buffer.
However, the following should be noted. Under the SJ Monitor, if a
program using the display for graphics is running with the scroller in
use (that is, GT ON is in effect), and the program does a soft exit
(.EXIT with RO not equal to 0) with the display stopped, the display
remains stopped until a CTRL/C is typed at the keyboard.

This can be recognized by failure of the monitor to echo on the screen
when expected. If the scroller text display disappears after a
program exit, always type CTRL/C to restore. If CTRL/C fails to
restore the display, the running program probably has an error.

Four scroller control characters provide the user with the capability
of halting the scroller, advancing the scrolling in page sections, and
printing hard copy from the scroller.

NOTE

The scroller logic does not 1limit the
length of a line, but the length of text
lines affects the number of lines which
may be displayed, since the text buffer
is finite. As text lines become longer,
the scroller 1logic may delete extra
lines to make room for new text,
temporarily decreasing the number of
lines displayed.

DISPLAY FILE HANDLER

A.2 DESCRIPTION OF GRAPHICS MACROS

The facilities of the Display File Handler are accessed through a set
of macros, contained in VTMAC, which generate assembly language calls
to the Handler at assembly time. The calls take the form of
subroutine calls to the subroutines in VTLIB. Arguments are passed to
the subroutines through register 0 and, in the case of the .TRACK
call, through both register 0 and the stack.

This call convention is similar to Version 1 RT-11 I/0 macro calls,
except that the subroutine call instruction is used instead of the EMT
instruction. If a macro requires an argument but none 1is specified,
it is assumed that the address of the argument has already been placed
in register 0. The programmer should not assume that RO is preserved
through the call.

A.2.1 .BLANK

The .BLANK request temporarily blanks the user display file specified
in the request. It does this by by-passing the call to the user
display file, which prevents the display processor from cycling
through the user file, effectively blanking it. This effect can later
be cancelled by the .RESTR request, which restores the user file.
When the call returns, the user is assured the display processor is
not in the file that was blanked.

Macro Call: .BLANK faddr

where: faddr is the address of the user
display file to be blanked.

Errors:

No error is returned. If the file specified was not found in the
Handler file or has already been blanked, the request is ignored.

A.2.2 .CLEAR

The .CLEAR request initializes the Display File Handler, clearing out
any calls to user display files and resetting all of the internal
flags and pointers.

After initialization with .LNKRT (Section A.2.4), the .CLEAR request
can be wused any time in a program to clear the display and to reset
pointers. All calls to user files are deleted and all pointers to
status buffers are reset. They must be re-inserted if they are to be
used again.

Macro Call: .CLEAR

Errors:

DISPLAY FILE HANDLER

None.
Example:

This example uses a .CLEAR request to initialize the Handler then
later uses the .CLEAR to re-initialize the display. The first .CLEAR

is used for the case when a program may be restarted after a CTRL C or
other exit.

BR RSTRT
EX1: BIS $20000,@444 ;SET REENTER BIT IN JSW
RSTRT: .UNLNK ;CLEARS LINK FLAG FOR RESTART
. LNKRT ;SET UP VECTORS, START DISPLAY
.CLEAR ; INITIALIZE HANDLER
.INSRT $FILEl ;DISPLAY A PICTURE
1$: .TTYIN ;WAIT FOR A KEY STRIKE
CMPB #12,R0 ;LINE FEED?
BNE 1§ ;NO, LOOP
.CLEAR ;YES, CLEAR DISPLAY
.INSRT #FILE2 ;DISPLAY NEW PICTURE
FILEl: POINT ;AT POINT (0,500)
0
500
LONGV ;DRAW A LINE
5001 INTX ;TO (500,500)
0
DRET
0
FILE2: POINT ;AT POINT (500,0)
500
0
LONGV ;DRAW A LINE
01 INTX ;TO (500,500)
500
DRET
0
.END EX1

A.2.3 .INSRT

The .INSRT request inserts a call to the user display file specified
in the request into the Display File Handler's internal display file.
.INSRT causes the display processor to cycle through the user file as
a subroutine to the internal file. The handler permits two user files

at one time. The call inserted in the handler 1looks 1like the
following:

DISPLAY FILE HANDLER

DJSR ;DISPLAY SUBROUTINE
.t+4 ;RETURN ADDRESS
.faddr ;SUBROUTINE ADDRESS

The call to the user file is removed by replacing its address with the
address of a null display file. The user file is blanked by replacing
the DJSR with a DJMP instruction, bypassing the user file.

Macro Call: .INSRT faddr

where: faddr is the address of the user
display file to be inserted.

Errors:

The .INSRT request returns with the C bit set if there was an error in
processing the request. An error occurs only when the Handler's
display file is full and cannot accept another file. If the user file
specified exists, the request is not processed. Two display files
with the same starting address cannot be inserted.

Example:

See the examples in Sections A.2.2 and A.2.4.

A.2.4 _LNKRT

The .LNKRT request sets up the display interrupt vectors and possibly
links the Display File Handler to the scroll text buffer in the RT-11
monitor. It must be the first call to the Handler, and is wused
whether or not the RT-11 monitor is using the display for console
output (i.e., the KMON command GT ON has been entered).

The .LNKRT request used with the Version 03 RT-11 monitor enables a
display application program to determine the environment in which it
is operating. Error codes are provided for the situations where there
is no display hardware present on the system or the display hardware
is already being used by another task (e.g., a foreground job in the
foreground/background version).

The existence of the monitor scroller and the size of the Handler's
subpicture stack are also returned to the caller. If a previous call
to .LNKRT was made without a subsequent .UNLNK, the .LNKRT call is
ignored and an error code is returned.

Macro Call: .LNKRT

Errors:

Error codes are returned in RO, with the N condition bit set.

DISPLAY FILE HANDLER

Code Meaning

-1 No VT1ll display hardware is
present on this system.

-2 VT1l hardware is presently
in use.

-3 Handler has already been
linked.

On completion of a successful .LNKRT request, RO will contain the
display subroutine stack size, indicating the depth to which display
subroutines may be nested. The N bit will be zero.

If the RT-11 monitor scroll text buffer was not in memory at the time
of the .LNKRT, the C bit will be returned set. The KMON commands
GT ON and GT OFF cannot be issued while a task is using the display.

Example:
START: . LNKRT ;LINK TO MONITOR
BMI ERROR s ERROR DOING LINK
BCS CONT ;NO SCROLL IF C SET
.SCROL #SBUF s ADJUST SCROLL PARAMETERS
CONT: . INSRT $FILEl ;DISPLAY A PICTURE
1S: .TTYIN sWAIT FOR KEY STRIKE
CMPB #12,R0 ;s LINE FEED?
BNE 1$;NO, LOOP
.UNLNK sYES, UNLINK AND EXIT
.EXIT
SBUF: .BYTE 5 sLINE COUNT OF 5
.BYTE 7 ; INTENSITY 7 (SCALE OF 1-8)
.WORD 1000 sPOSITION OF TOP LINE
FILEl: POINT :AT POINT (500,500)
500
500
CHAR ;DISPLAY SOME TEXT
.ASCII /FILEl THIS IS FILEl. TYPE CR TO EXIT/
.EVEN
DRET
0
ERROR: Error routine

A.2.5 .LPEN

The .LPEN request transfers the address of a 1light pen status data
buffer to VTBASE. Once the buffer pointer has been passed to the
Handler, the light pen interrupt handler in VTBASE will transfer

display processor status data to the buffer, depending on the state of
the buffer flag.

DISPLAY FILE HANDLER

The buffer must have seven contiguous words of storage. The first
word is the buffer flag, and it is initially cleared (set to zero) by
the .LPEN request. When a light pen interrupt occurs, the interrupt
handler transfers status data to the buffer and then sets the buffer
flag non-zero. The program can loop on the buffer flag when waiting
for a 1light pen hit (although doing this will tie up the processor;
in a foreground/background environment, timed waits would be more
desirable). No further data transfers take place, despite the
occurrence of numerous light pen interrupts, until the buffer flag is
again cleared to zero. This permits the program to process the data
before it is destroyed by another interrupt.

The buffer structure looks like this:

Buffer Flag

Name

Subpicture Tag

Display Program Counter (DPC)
Display Status Register (DSR)
X Status Register (XSR)

Y Status Register (YSR)

The Name value is the contents of the software Name Register
(described in A.3.5) at the time of interrupt. The Tag value is the
tag of the subpicture being displayed at the time of interrupt. The
last four data items are the contents of the display processor status
registers at the time of interrupt. They are described in detail in
Table A-1.

Macro Call: .LPEN baddr

where: baddr is the address of the 7-word
light pen status data buffer.

Errors:

None.

If a .LPEN was already issued and a buffer specified, the new buffer
address replaces the previous buffer address. Only one light pen
buffer can be in use at a time.

Example:
. INSRT #$LFILE ;DISPLAY LFILE
.LPEN #LBUF ;SET UP LPEN BUFFER
LOOP: TST LBUF ;TEST LBUF FLAG, WHICH
BEQ LOOP ;WILL BE SET NON-ZERO

;ON LIGHT PEN HIT.
:PROCESS DATA IN LBUF HERE.
;DATA IN LBUF

CLR LBUF ;CLEAR THE BUFFER FLAG
;PERMITTING ANOTHER "HIT"
BR LOOP ;GO WAIT FOR IT

DISPLAY FILE HANDLER

LBUF: «.BLKW 7 ;SEVEN WORD LPEN BUFFER
LFILE:

Table A-1
Description of Display Status Words

Bits Significance

DISPLAY PROGRAM COUNTER (DPC=172000)

0-15 Address of display processor
program counter at time of
interrupt.

DISPLAY STATUS REGISTER (DSR=172002)

0-1 Line Type

2 Spare

3 Blink

4 Italics

5 Edge Indicator
6 Shift Out

7 Light Pen Flag
8-10 Intensity
11-14 Mode

15 Stop Flag

X STATUS REGISTER (XSR=172004)

0-9 X Position
10-15 Graphplot Increment

Y STATUS REGISTER (YSR=172006)

0-9 Y Position
10-15 Character Register

DISPLAY FILE HANDLER

A.2.6 .NAME

The .NAME request has been added to the Version 03 Display File
Handler. The contents of the name register are now stacked when a
subpicture call is made. When a light pen interrupt occurs, the
contents of the name register stack may be recovered if the user
program has supplied the address of a buffer through the .NAME
request.

The buffer must have a size equal to the stack depth (default 1is 10)
pPlus one word for the flag. When the .NAME request is entered, the
address of the buffer is passed to the Handler and the first word (the
flag word) is cleared. When a 1light pen hit occurs, the stack's
contents are transferred and the flag is set non-zero.

Macro Call: .NAME baddr

where: baddr is the address of the name register
buffer.

Errors:
None.

If a .NAME request has been previously issued, the new buffer address
replaces the previous buffer address.

A.2.7 .REMOV

The .REMOV request removes the call to a user display file previously
inserted in the handler's display file by the .INSRT request. All
reference to the user file is removed, unlike the .BLANK request,
which merely bypasses the call while leaving it intact.

Macro Call: .REMOV faddr

where: faddr is the address of the display file to be
removed.

Errors:

No errors are returned. If the file address given cannot be found,
the request is ignored.

A.2.8 L.RESTR

The .RESTR request restores a user display file that was previously
blanked by a .BLANK request. It removes the by-pass of the call to
the user file, so that the display processor once again cycles through
the user file.

A-10

DISPLAY FILE HANDLER

Macro Call: .RESTR faddr

where: faddr is the address of the user file that is
to be restored to view.

Errors:

No errors are returned. If the file specified cannot be found, the
request is ignored.

A.2.9 .SCROL

This request is used to modify the appearance of the Display Monitor's
text display. The .SCROL request permits the programmer to change the
maximum line count, intensity and the position of the top line of text
of the scroller. The request passes the address of a two-word buffer
which contains the parameter specifications. The first byte is the
line count, the second byte is the intensity, and the second word is
the Y position. Line count, intensity and Y position must all be
octal numbers. The intensity may be any number from 0 to 7, ranging
from dimmest to brightest. (If an intensity of 0 is specified, the
scroller text will be almost unnoticeable at a BRIGHTNESS knob setting
less than one-half). The scroller parameter change is temporary,
since an .UNLNK or CTRL/C restores the previous values.

Macro Call: .SCROL baddr

where: baddr is the address of the two-word
scroll parameters buffer.

Errors:

No errors are returned. No checking is done on the values of the
parameters. A zero argument is interpreted to mean that the parameter
value is not to be changed. A negative argument causes the default
parameter value to be restored.

Example:

.SCROL #SCBUF ;ADJUST SCROLL PARAMETERS

.
.

SCBUF: .BYTE 5 ;DECREASE #LINES TO 5.
.BYTE 0 ; LEAVE INTENSITY UNCHANGED.
.WORD 300 ; TOP LINE AT Y¥Y=300.

A-11

DISPLAY FILE HANDLER

A.2.10 .START

The .START request starts the display processor if it was stopped by a
.STOP directive. If the display processor is running, it is stopped
first, then restarted. In either case, the subpicture stack is
cleared and the display processor is started at the top of the
handler's internal display file.

Macro Call: .START
Errors:

None.

A.2.11 ,STAT

The .STAT request transfers the address of a seven-word status buffer
to the display stop interrupt routine in VTBASE. Once the transfer
has been made, display processor status data is transferred to the
buffer by the display stop interrupt routine in VTBASE whenever a
-DSTAT or .DHALT instruction is encountered (see Sections A.3.3 and
A.3.4). The transfer is made only when the buffer flag is clear
(zero). After the transfer is made, the buffer flag is set non-zero
and the .DSTAT or .DHALT instruction is replaced by a .DNOP (Display
NOP) instruction.

The status buffer must be a seven-word, contiguous block of memory.
Its contents are the same as the light pen status buffer. For a
detailed description of the buffer and an explanation of the status
words, see Section A.2.5 and Table A-1.

Macro Call: .STAT baddr

where: baddr is the address of the status
buffer receiving the data.

Errors:

No errors are indicated. If a buffer was previously set up, the new
buffer address is replaced as the old buffer address.

A.2.12 ,STOP

The .STOP request "stops" the display processor. It actually effects
a stop by preventing the DPU from cycling through any user display
files. It is useful for stopping the display during modification of a
display file, a risky task when the display processor is running.
However, a .BLANK could be equally useful for this purpose, since the
-BLANK request does not return until the display processor has been
removed from the user display file being blanked.

A-12

DISPLAY FILE HANDLER

Macro Call: .STOP
Errors:

None.

NOTE

Since the display processor must cycle
through the text buffer in the Display
Monitor in order for console output to
be processed, the text buffer remains
visible after a .STOP request is
processed, but all user files disappear.

A.2.13 .SYNC/.NOSYN

The .SYNC and .NOSYN requests provide program access to the power line
synchronization feature of the display processor. The .SYNC request
enables synchronization and the .NOSYN request disables it (the
default case).

Synchronization is achieved by stopping the display and restarting it
when the power line frequency reaches a trigger point, e.g., a peak or
zero-crossing. Synchronization has the effect of fixing the display
refresh time. This may be useful in some cases where small amounts of
material are displayed but the amount frequently changes, causing

changes in intensity. In most cases, however, using synchronization
increases flicker.

Macro Calls: .SYNC
.NOSYN

Errors:

None.

A.2.14 .TRACK

The .TRACK request causes the tracking object to appear on the display
CRT at the position specified in the request. The tracking object is
a diamond-shaped display figure which is light-pen sensitive. If the
light pen 1is placed over the tracking object and then moved, the

tracking object follows the light pen, trying to center itself on the
pen.

The tracking object first appears at a position specified in a
two-word buffer whose address was supplied with the .TRACK request.
As the tracking object moves to keep centered on the 1light pen, the
new center position is returned to the buffer. A new set of X and Y

A-13

DISPLAY FILE HANDLER

values is returned for each light pen interrupt.

The tracking object cannot be lost by moving it off the visible
portion of the display CRT. When the edge flag is set, indicating a
side of the tracking object is crossing the edge of the display area,
the tracking object stops until moved toward the center. To remove
the tracking object from the screen, repeat the .TRACK request without
arguments.

The .TRACK request may also include the address of a completion
routine as the second arqgument. If a .TRACK completion routine is
specified, the light pen interrupt handler passes control to the
completion routine at interrupt 1level. The completion routine is
called as a subroutine and the exit statement must be an RTS PC. The
completion routine must also preserve any registers it may use.

Macro Call: .TRACK baddr, croutine

where: baddr is the address of the two-word
buffer containing the X and Y
position for the track object.

croutine is the address of the completion
routine.

Errors:
None.
Example:

See Section A.10.

A.2.15 LUNLNK

The .UNLNK request is used before exiting from a program. In the case
where the scroller is present, .UNLNK breaks the link, established by
.LNKRT, between the Display File Handler's internal display file and
the scroll file in the Display Monitor. The display processor is
started cycling in the scroll text buffer, and no further graphics may
be done until the 1link is established again. In the case where no
scroller exists, the display processor is simply left stopped.

Macro Call: .UNLNK

Errors:

No errors are returned. An internal link flag is checked to determine
if the link exists. If it does not exist, the request is ignored.

A-14

DISPLAY FILE HANDLER

A.3 BXTENDED DISPLAY INSTRUCTIONS

The Display File Handler offers the assembly language graphics
programmer an extended display processor instruction set, implemented
in software through the use of the Load Status Register A (LSRA)
instruction. The extended instruction set includes: subroutine call,
subroutine return, display status return, display halt, and load name
register.

A.3.1 DJSR Subroutine Call Instruction

The DJSR instruction (octal code is 173400) simulates a display
subroutine call instruction by wusing the display stop instruction
(LSRA instruction with interrupt bits set). The display stop
interrupt handler interprets the non-zero word following the DJSR as
the subroutine return address, and the second word following the DJSR
as the address of the subroutine to be called. The instruction
sequence is:

DJSR

Return address

Subroutine address
Example:

To call a subroutine SQUARE:

POINT ;POSITION BEAM

100 ;AT (100,100)

100

DJSR ;THEN CALL SUBROUTINE
.+4

SQUARE ;TO DRAW A SQUARE
DRET

0

The use of the return address preceding the subroutine address offers
several advantages. For example, the BASIC-11 graphics software uses
the return address to branch around subpicture tag data stored
following the subpicture address. This structure is described in
Section A.5.3. 1In addition, a subroutine may be temporarily bypassed
by replacing the DJSR code with a DJMP instruction, without the need
to stop the display processor to make the by-pass.

The address of the return address is stacked by the display stop
interrupt handler on an internal subpicture stack. The stack depth is
conditionalized and has a default depth of 10. If the stack bottom is
reached, the display stop interrupt handler attempts to protect the
system by rejecting additional subroutine calls. In that case, the

portions of the display exceeding the legal stack depth will not be
displayed.

A-15

DISPLAY FILE HANDLER

A.3.2 DRET Subroutine Return Instruction

The DRET instruction provides the means for returning from a display
file subroutine. It uses the same octal code as DJSR, but with a
single argument of zero. The DRET instruction causes the display stop

interrupt handler to pop its subpicture stack and fetch the subroutine
return address.

Example:

SQUARE: LONGV ;DRAW A SQUARE
100! INTX
0
O!INTX
100
100! INTX!MINUSX
0
O!INTX
100!MINUSX

DRET ;RETURN FROM SUBPICTURE
0

A.3.3 DSTAT Display Status Instruction

The DSTAT instruction (octal code is 173420) uses the LSRA instruction
to produce a display stop interrupt, causing the display stop
interrupt handler to return display status data to a seven-word user
status buffer. The status buffer must first have been set up with a
.STAT macro call (if not, the DSTAT is ignored and the display is
resumed). The first word of the buffer is set non-zero to indicate
the transfer has taken place, and the DSTAT is replaced with a DNOP
(display NOP). The first word is the buffer flag and the next six
words contain name register contents, current subpicture tag, display
program counter, display status register, display X register, and

display Y register. After transfer of status data, the display is
resumed.

A.3.4 DHALT Display Halt Instruction

The DHALT instruction (octal code is 173500) operates similarly to the
DSTAT instruction. The difference between the two instructions is
that the DHALT instruction leaves the display processor stopped when
exiting from the interrupt. A status data transfer takes place
provided the buffer was initialized with a .STAT call. If not, the
DHALT is ignored.

Example:
.STAT #SBUF ; INIT BUFFER
MOV #DHALT,STPLOC ; INSERT DHALT
. INSRT #DFILE ;DISPLAY THE PICTURE

A-16

DISPLAY FILE HANDLER

1s: TST SBUF ;sDHALT PROCESSED?
BEQ 1s ;NO, WAIT

SBUF: .BLKW 7 ;STATUS BUFFER

DFILE: POINT ;POSITION NEAR TOP OF 12" TUBE
.WORD 500,1350
LONGV ;DRAW A LINE, MAYBE OVER EDGE
.WORD 0,400 ;IF IT IS A 12" SCOPE.

STPLOC: DNOP ;STATUS WILL BE RETURNED AT TH
DRET
0

A.3.5 DMNAME Load Name Register Instruction

The Display File Handler provides a name register capability through
the use of the display stop interrupt. When a DNAME instruction
(octal code is 173520) is encountered, a display stop interrupt is
generated. The display stop handler stores the argument following the
DNAME instruction in an internal software register called the "name
register". The current name register contents are returned whenever a
DSTAT or DHALT is encountered, and more importantly, whenever a 1light
pen interrupt occurs. The use of a "name" (with a valid range from 1
to 77777) enables the programmer to label each element of the display
file with a wunique name, permitting the easy identification of the
particular display element selected by the light pen.

The name register contents are stacked on a subpicture call and
restored on return from the subpicture.

Example:
The SQUARE subroutine with "named" sides.

SQUARE: DNAME ;NAME IS
10 ;10
LONGV ;sDRAW A SIDE
100! INTX
0
DNAME ;THIS SIDE IS NAMED
11 ;11
O!INTX sSTILL IN LONG VECTOR MODE
100
DNAME
12
100! INTX!MINUSX
0
DNAME
13
0 !INTX
100!MINUSX
DRET sRETURN FROM SUBPICTURE
0

A-17

DISPLAY FILE HANDLER

A.4 USING THE DISPLAY FILE HANDLER

Graphics programs which intend to use the Display File Handler for
display processor management can be written in MACRO assembly
language. The display code portions of the program may use the
mnemonics described in Section A.7. Calls to the Handler should have
the format described in Section A.6.

The Display File Handler is supplied in two pieces, a file of MACRO
definitions and a library containing the Display File Handler modules.

MACRO Definition File: VTMAC . MAC
Display File Handler: VILIB.OBJ (consisting of:)

VTBASE.OBJ
VTCAL1.0OBJ
VTCAL2.0BJ
VTCAL3.0BJ
VTCAL4.0BJ

A.4.1 Assembling Graphics Programs

To assemble a graphics program using the display processor mnemonics
or the Display Handler macro calls, the file VTMAC.MAC must be
assembled with the program, and must precede the program in the
assembler command string.

Example:

Assume PICTUR.MAC is a user graphics program to be assembled. An
assembler command string would look like this:

MACRO VTMAC+PICTUR/OBJECT

A.4.2 Linking Graphics Programs

Once assembled with VTMAC, the graphics program must be 1linked with
the Display File Handler, which is supplied as a single concatenated
object module,VTHDLR.OBJ. The Handler may optionally be built as a
library, following the directions in A.8.5. The advantage of using
the library when linking is that the Linker will select from the
library only those modules actually used. Linking with VTHDLR.OBJ
results in all modules being included in the link.

To link a user program called PICTUR.OBJ using the concatenated object
module supplied with RT-11:

LINK PICTUR,VTHDLR

To link a program called PICTUR.OBJ using the VTLIB library built by

A-18

