SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)
Summary of SYSF4 Subprograms

Function Section Purpose
Call

RT-11 Services

CHAIN 4.3.2 Chains to another program (in the
background job only).

*DEVICE 4.3.6 Specifies actions to be taken on normal or
abnormal program termination, such as
turning off interrupt enable on foreign
devices, etc.

GTJB 4.3.10 Returns the parameters of this job.

IDSTAT 4.3.22 Returns the status of the specified
device.

IFETCH 4.3.29 Loads a device handler into memory.

IQSET 4.3.37 Expands the size. of the RT-11 monitor

queue from the free space managed by the
FORTRAN system.

ISPFN 4.3.47 Issues special function requests to
ISPFNC various handlers, such as magtape. The
ISPFNF four modes correspond to the IWRITE,
ISPFNW IWRITC, IWRITF, the IWRITW modes.

*ITLOCK 4.3.50 Indicates whether the USR is currently in

use by another job and performs a LOCK if
the USR is available.

LOCK 4.3.69 Makes the RT-11 monitor User Service
Routine (USR) permanently resident until
an UNLOCK function is executed. A portion
of the user's program is swapped out to
make room for the USR if necessary.

RCHAIN 4.3.86 Allows a program to access variables
passed across a chain.

RCTRLO 4.3.87 Enables output to the terminal by
cancelling the effect of a previously
typed CTRL/O, if any.

*RESUME 4.3.89 Causes the main program execution of a job
to resume where it was suspended by a
SUSPND function call.

SCCA 4.3.90 Intercepts a CTRL/C command initiated at
the console terminal.

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)

Summary of SYSF4 Subprograms

Function
Call

Section

Purpose

RT-11 Services (cont.

SETCMD 4.3.99
*SUSPND 4.3.97
UNLOCK 4.3.102

Passes command 1lines to the keyboard
monitor to be executed after the program
exits.

Suspends main
running job;
to execute.

program execution of the
completion routines continue

Releases the USR if a LOCK was
the user program is
required.

performed;
swapped in if

INTEGER*4 Support Functions

AJFLT 4.3.1
DJFLT 4.3.7
IAJFLT 4.3.13
IDJFLT 4.3.21
IJcvr 4.3.28
JADD 4.3.57
JAFIX 4.3.58
JCMP 4.3.59
JDFIX 4.3.60
JDIV 4.3.61
JICVT 4.3.62
JJCVT 4.3.63

Converts a specified INTEGER*4
REAL*4 and returns the
function value.

value to
result as the

Converts a specified INTEGER*4
REAL*8 and returns the
function value.

value to
result as the

Converts a specified INTEGER*4 value to
REAL*4 and stores the result.
Converts a specified INTEGER*4 value to
REAL*8 and stores the result.
Converts a specified INTEGER*4 value to

INTEGER*2.
Computes the sum of two INTEGER*4 values.
Converts a REAL*4 value to INTEGER*4.

Compares two INTEGER*4 values and

an INTEGER*2 value that
signed comparison result.

returns
reflects the

Converts a REAL*8 value to INTEGER*4.

Computes the quotient and remainder of two
INTEGER*4 values.

Converts an INTEGER*2 value to INTEGER*4.

Converts the two-word internal time format
to INTEGER*4 format, and vice versa.

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (Cont.)

Summary of SYSF4 Sbuprograms

Function
Call

Section

Purpose

INTEGER*4 Support Functions (cont.)

JMOV 4.3.64 Assigns an INTEGER*4 value to a variable.

JMUL 4.3.65 Computes the product of two INTEGER*4
values.

JSUB 4.3.66 Computes the difference between two
INTEGER*4 values.

Character String Functions

CONCAT 4.3.4 Concatenates two variable-length strings.

GETSTR 4.3.8 Reads a character string from a specified
FORTRAN logical unit.

INDEX 4.3.30 Returns the location in one string of the
first occurrence of another string .

INSERT 4.3.31 Replaces a portion of one string with
another string.

ISCOMP 4.3.91 Compares two character strings.

IVERIF 4.3.103 Indicates whether characters in one string
appear in another.

LEN 4.3.68 Returns the number of characters 1in a
specified string.

PUTSTR 4.3.83 Writes a variable-length character string
on a specified FORTRAN logical unit.

REPEAT 4.3.88 Concatenates a specified string with
itself to provide an indicated number of
copies and stores the resultant string.

SCOMP 4.3.91 Compares two character strings.

SCOPY 4.3.92 Copies a character string from one array
to another,

STRPAD 4.3.95 Pads a variable-length string on the right
with blanks to create a new string of a
specified length.

SUBSTR 4.3.96 Copies a substring from a specified
string.

TRANSL 4.3.100 Replaces one string with another after

performing character modification.

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)

Summary of SYSF4 Subprograms

Function

Section Purpose
Call
Character String Functions (cont.)
TRIM 4.3.101 Removes trailing blanks from a character
string.
VERIFY 4.3.103 Indicates whether characters in one string

appear in another.

Radix~50 Conversion O

IRADS0

R50ASC

RAD50

perations
4.3.38 Converts ASCII characters to Radix-50,
returning the number of characters
converted.
4.3.84 Converts Radix-50 characters to ASCII.
4.3.85 Converts six ASCII characters, returning a

REAL*4
value.

result that is the 2-word Radix-50

Miscellaneous Services

IADDR 4.3.12 Obtains the memory address of a specified
entity.

IGETSP 4.3.27 Returns the address and size (in words) of
free space obtained from the FORTRAN
system.

INTSET 4.3.32 Establishes a specified FORTRAN subroutine
as an interrupt service routine at a
specified priority.

IPEEK 4.3.33 Returns the value of a word located at a
specified absolute memory address.

IPEEKB 4.3.34 Returns the value of a byte located at a
specified byte address.

IPOKE 4.3.35 Stores an integer value in an absolute
memory location.

IPOKEB 4.3.36 Stores an integer value in a specified
byte location.

ISPY 4.3.48 Returns the integer value of the word
located at a specified offset from the
beginning of the RT-11 resident monitor.

* FB and XM monitors only.

SYSTEM SUBROUTINE LIBRARY

Routines requiring the USR (see Section 2.3) differ between the SJ and
FB monitors. (The USR 1is always resident in the XM monitor.) The
following functions require the use of the USR:

CLOSEC

GETSTR (only if first I/0 operation on logical unit)
ICDFN (single job only)

GETLIN

ICSI

IDELET

IDSTAT

IENTER

IFETCH

IQSET

IRENAM

ITLOCK (only if USR is not in use by the other job)
LOCK (only if USR is in a swapping state)

LOOKUP

PUTSTR (only if first I/0 operation on logical unit)

Certain requests require a queue element taken from the same 1list as
the I/0 queue elements. These are:

IRCVD/IRCVDC/IRCVDF/IRCVDW
IREAD/IREADC/IREADF/IREADW
ISCHED
ISDAT/ISDATC/ISDATF/ISDATW
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ITIMER

ITWAIT

IUNTIL
IWRITC/IWRITE/IWRITF/IWRITW
MRKT

MWAIT

4.2.1 Completion Routines

Completion routines are subprograms that execute asynchronously with a
main program. A completion routine is scheduled to run as soon as
possible after the event for which it has been waiting has completed
(such as the completion of an I/0 transfer, or the lapsing of a
specified time interval). All completion routines of the current job
have higher priority than other parts of the job; therefore, once a
completion routine becomes runnable because of its associated event,
it interrupts execution of the job and continues to execute until it
relinquishes control. See Figure 1-2, in Chapter 1.

Completion routines are handled differently in the SJ and the FB
monitors. In SJ, completion routines are totally asynchronous and can
interrupt one another. In FB (and XM), completion routines do not
interrupt each other but are queued and made to wait until the correct
job is running. (For further information on completion routines, see
Sections 2.2.8 and 4.1.4).

A FORTRAN completion routine can have a maximum of two arguments:
SUBROUTINE crtn [(iargl,iarg2)]

where: iargl is equivalent to RO on entry to an assembly
language completion routine.

SYSTEM SUBROUTINE LIBRARY

iarg2 is equivalent to Rl on entry to an assembly
language completion routine.

If an error occurs in a completion routine or in a subroutine at
completion level, the error handler traces back normally through to
the original interruption of the main program. Thus the traceback is
shown as though the completion routine were called from the main
program and lets the user know where the main program was executing if
a fatal error occurs.

Certain restrictions apply to completion routines (those routines that
are activated by the following calls:)

INTSET
IRCVDC
IRCVDF
IREADC
IREADF
ISCHED
ISDATC
ISDATF
ISPFNC
ISPFNF
ITIMER
IWRITC
IWRITF
MRKT

These restrictions are:

1. The first subroutine call that references a FORTRAN
completion routine must be issued from the main program.

2. No channels can be allocated (by calls to IGETC) or freed (by
calls to 1IFREEC) from a completion routine. Channels to be
used by completion routines should be allocated and placed in
a COMMON block for use by the routine.

3. The completion routine cannot perform any call that requires
the use of the USR, such as LOOKUP and IENTER. See Section
4.2 for a list of SYSF4 functions that call the USR.

4. Files to be operated upon in completion routines must be
opened and closed by the main program. There are, however,
no restrictions on the input or output operations that can be
performed in the completion routine. TIf many files must be
made available to the completion routine, they can be opened
by the main program and saved for later use (without tying up
RT-11 channels) by the ISAVES call. The completion routine
can later make them available by reattaching the file to a
channel with an IREOPN call.

5. FORTRAN subprograms are reusable but not reentrant. A given
subprogram can be used many times as a completion routine or
as a routine in the main program, but a subprogram executing
as main program code does not work properly if it is
interrupted at the completion level. This restriction
applies to all subprograms that can be invoked at the
completion level and can be active at the same time in the
main program.

6. Only one completion function should be active at any time
under the single-job monitor (see Section 4.1.4).

SYSTEM SUBROUTINE LIBRARY

7. Assembly language completion routines must be exited via an
RTS PC.

8. FORTRAN completion routines must be exited by execution of a
RETURN or END statement in the subroutine.

4.2.2 Channel-Oriented Operations

An RT-11 channel being used for input/output with SYSF4 must be
allocated in one of the following two ways:

1. The channel is allocated and marked in use to the FORTRAN I/O
system by a call to IGETC and is later freed by a call to
IFREEC.

2. An ICDFN call is issued to define more channels (up to 256).
All channels numbered greater than 17 (octal) can be freely
used by the programmer; the FORTRAN I/O system uses only
channels 0 through 17 (octal).

Channels must be allocated in the main program routine or its
subprograms, not in routines that are activated as the result of I/0
completion events or ISCHED or ITIMER calls.

4.2.3 INTEGER*4 Support Functions

INTEGER*4 variables are allocated two words of storage. INTEGER*4
values are stored in two's complement representation. The first word
(lower address) contains the low-order part of the value, and the
second word (higher address) contains the sign and the high-order part
of the value. The range of numbers supported is -2"31+1 to 2731-1.

Note that this format differs from the 2-word internal time format
that stores the high-order part of the value in the first word and the
low-order part in the second. The JJCVT function (Section 4.3.63) is
provided for conversion between the two internal formats.

Integer and real arguments to subprograms are indicated in the
following manner in this chapter.

INTEGER*2 arguments
INTEGER*4 arguments
REAL*4 arguments
REAL*8 arguments

oo
WoHono

When the DATA statement is used to initialize INTEGER*4 variables, it
must specify both the 1low- and high-order parts. The following
example only initializes the first word.

INTEGER*4 J
DATA J/3/

The correct way to initialize an INTEGER*4 variable to a constant
(such as, 3) is shown below:

INTEGER*4 J

INTEGER*2 I(2)

EQUIVALENCE (J,I)

DATA I/3,0/ LINITIALIZE J TO 3

4-19

SYSTEM SUBROUTINE LIBRARY

If initializing an INTEGER*4 variable to a negative value (such as
-4), the high-order (second word) part must be the continuation of the
two's complement of the low-order part. For example:

INTEGER*4 J

INTEGER*2 I(2)

EQUIVALENCE (J,I)

DATA 1/-4,-1/ !INITIALIZE J TO -4

The following form is suitable for INTEGER*4 arguments to subprograms:

INTEGER*2 J(2)
DATA J/3,0/ ! LOW-ORDER ,HIGH-ORDER

4.2.4 Character String Functions

The SYSF4 character string functions and routines provide
variable-length string support for RT-11 FORTRAN. SYSF4 calls are
provided to perform the following character string operations:

® Read character strings from a specified FORTRAN logical unit
(GETSTR) .

Write character strings to a specified FORTRAN logical unit
(PUTSTR) .

Concatenate variable-length strings (CONCAT) .

Return the position of one string in another (INDEX).

Insert one string into another (INSERT).

Return the length of a string (LEN).

Repeat a character string (REPEAT).

Compare two strings (SCOMP) .

Copy a character string (SCOPY).

Pad a string with rightmost blanks (STRPAD) .

Copy a substring from a string (SUBSTR).

Perform character modification (TRANSL).

Remove trailing blanks (TRIM).

Verify the presence of characters in a string (VERIFY).

Strings are stored in LOGICAL*1 arrays that are defined and
dimensioned by the FORTRAN programmer. Strings are stored in these
arrays as one character per array element plus a zero element to
indicate the current end of the string (ASCIZ format).

The length of a string can vary at execution time, ranging from zero
characters in length to one 1less than the size of the array that
stores the string. The maximum size of any string is 32767
characters. Strings can contain any of the 7-bit ASCII characters
except null (0), since the null character is used to mark the end of
the string. Bit 7 of each character must be cleared (0); therefore,
the valid characters are those whose decimal representations range
from 1 to 127, inclusive.

The ASCII code used in this string package is the same as that
employed by FORTRAN for A-type FORMAT items, ENCODE/DECODE strings,
and object-time FORMAT strings. ASCIZ strings in the form used by
these routines are generated by the FORTRAN compiler whenever quoted
strings are used as arguments in the CALL statement. Note that a null
string (a string containing no characters) can be represented in
FORTRAN by a variable or constant of any type that contains the value
zero, or by a LOGICAL variable or constant with the .FALSE. value.

The SYSF4 user should ensure that a string never overflows the array
that contains it by being aware of the length of the string result

SYSTEM SUBROUTINE LIBRARY

produced by each routine. In many routines where the resultant string
length can vary or 1is difficult to determine, an optional integer
argument can be specified to the subroutine to limit the length. In
the sections describing the character string routines, this argument
is called len. The length of an output string is limited to the value
specified for len plus one (for the null terminator); therefore the
array receiving the result must be at least len plus one elements in
size.

The optional argument err can be included when len is specified. Err
is a logical variable that should be initialized by the FORTRAN
program to the .FALSE. value. If a string function 1is given the
arguments len and err, and len is actually used to limit the length of
the string result, then err is set to the .TRUE. value. If len is
not used to truncate the string, err is unchanged; that is, it
remains .FALSE..

Arguments len and err are normally optional arguments. The argument
len can appear alone; however, len must appear if err is specified.
The err argument should be used for GETSTR and PUTSTR.

Several routines use the concept of character position. Each
character in a string is assigned a position number that is one
greater than the position of the character immediately to its left.
The first character in a string is in position one.

4.2.4.1 Allocating Character String Variables - A one-dimensional
LOGICAL*1 array can be used to contain a single string whose length
can vary from zero characters to one fewer than the dimensioned length
of the array. For example:

LOGICAL*1 A(45) {ALLOCATE SPACE FOR STRING VARIABLE A

The preceding example allows array A to be used as a string variable
that can contain a string of 44 or fewer characters. Similarly, a
two-dimensional LOGICAL*1l array can be used to contain a
one-dimensional array of strings. Each string in the array can have a
length up to one less than the first dimension of the LOGICAL*1 array.
There can be as many strings as the number specified for the second
dimension of the LOGICAL*1l array. For example:

LOGICAL*1 W(21,10) IALLOCATE AN ARRAY OF STRINGS

The preceding example creates a string array W that has ten string
elements, each of which can contain up to 20 characters. String I in
array W is referenced in subroutine or function calls as W(1,I).

A two-dimensional string array can be allocated. For example:
LOGICAL*1 T(14,5,7) IALLOCATE A 5 BY 7 STRING ARRAY

In the preceding example, each string in array T can vary in length to
a maximum of 13 characters. String I,J of the array can be referenced
as T(1,I,J). Note that T is the same as T(1l,1,1). This dimensioning
process can be continued to create string arrays of up to six
dimensions (represented by LOGICAL*1 arrays of up to seven
dimensions) .

SYSTEM SUBROUTINE LIBRARY

4.2.4.2 Passing Strings to Subprograms - The LOGICAL*1 arrays that
contain strings can be placed in a COMMON block and referenced by any
or all routines with a similar COMMON declaration. However, care
should be taken when a LOGICAL*] array is placed in a COMMON block,
for if such an array has an odd length, it causes all succeeding
variables in the COMMON block to be assigned odd addresses.

A LOGICAL*1 array has an odd length only if the product of its
dimensions is odd. For example:

LOGICAL*1 B(10,7) ! (10*7)=70; EVEN LENGTH
LOGICAL*1 H(21) !21 IS ODD; ODD LENGTH

If odd length arrays are to be placed in a COMMON block, they should
either be placed at the end of the block or they should be paired to
result in an effective even length. For example:

COMMON Al,A2,A3(10) ,H(21) !PLACE ODD-SIZED ARRAY AT END

or
COMMON Al,A2,H(21) ,H1(7),A3(10) !PAIR ODD-SIZED ARRAYS H AND H1

Note that these cautions apply only to LOGICAL*1 variables and arrays.

The second method of passing strings to subprograms is through
arguments and formal parameters. A single string can be passed by
using its array name as an argument. For example:

LOGICAL*1 A(21) !STRING VARIABLE "A", 20 CHARACTERS MAXIMUM
CALL SUBR(A) !PASS STRING A TO SUBROUTINE SUBR

If the maximum length of a string argument is unknown in a subroutine
or function, or if the routine is used to handle many different length
strings, the dummy argument in the routine should be declared as a
LOGICAL*1 array with a dimension of one, such as LOGICAL*1 ARG(1). 1In
this case, the string routines correctly determine the length of ARG
whenever it 1is used, but it is not possible to determine the maximum
size string that can be stored in ARG. If a multi-dimensional array
of strings 1is passed to a routine, it must be declared in the called
program with the same dimensions as were specified in the calling
program.

NOTE

The length argument specified in many of
the character string functions refers to
the maximum 1length of the string
excluding the necessary null byte
terminator. The length of the LOGICAL*1
array to receive the string must be at
least one greater than the length
argument.

4.2.4.3 Using Quoted-String Literals - Quoted-strings can be used as
arguments to any of the string routines that are invoked by functions
or the CALL statement. They can be used for routines invoked as
functions. The following example compares the string in the array
NAME to the constant string DOE, JOHN and sets the value of the
integer variable M accordingly.

CALL SCOMP (NAME, 'DOE, JOHN',M)

4-22

SYSTEM SUBROUTINE LIBRARY

4.3 LIBRARY FUNCTIONS AND SUBROUTINES

This section presents all SYSF4 functions and subroutines in
alphabetical order. To reference these subprograms by usage, see
Table 4-1.

AJFLT

4.3.1 AJFLT

The AJFLT function converts an INTEGER*4 value to a REAL*4 value and
returns that result as the function value.

Form: a = AJFLT (jsrc)
where: jsrc is the INTEGER*4 variable to be converted.
Function Results:

The function result is the REAL*4 value that 1is the result of the
operation.

Example:

The following example converts the INTEGER*4 value contained in JVAL
to single precision (REAL*4), multiplies it by 3.5, and stores the
result in VALUE.

REALX4 VALUES>AJFLT
INTEGERX4 JVAL

.

.

VALUE=AJFLT (JVAL)IX3.5

CHAIN

4.3.2 CHAIN

The CHAIN subroutine allows a background program (or any program in
the single-job system) to transfer control directly to another
background program, passing it specified information. CHAIN cannot be
called from a completion or interrupt routine. CHAIN does not close
any of the FORTRAN logical units. When CHAINing to any other program,
the user should explicitly close the opened logical units with calls
to the CLOSE routine. Any routines specified 1in a FORTRAN USEREX
library call are not executed if a CHAIN is accomplished.

Form: CALL CHAIN (dblk,var,wcnt)

where: dblk is the address of a four-word Radix-50
descriptor of the file specification for the
program to be run. (See the PDP-11 FORTRAN
Lanquage Reference Manual for the format of
the file specification.)

SYSTEM SUBROUTINE LIBRARY

var is the first variable (must start on a word
boundary) in a sequence of variables with
increasing memory addresses to be passed
between programs in the chain parameter area
(absolute locations 510 up to 700). A single
array or a COMMON block (or portion of a
COMMON block) is a suitable sequence of
variables.

wcnt is a word count (up to 60 words) specifying
the number of words (beginning at var) to be
passed to the called program. If no words
are passed, then a word count of 0 is
supplied.

If the size of the chain parameter area is insufficient, it can be
increased by specifying the /B (or /BOTTOM) option to LINK for both
the program executing the CHAIN call and the program receiving
control.

The data passed can be accessed through a call to the RCHAIN routine.
For more information on chaining to other programs, see Section 2.4.2.

Errors:
None.
Example:

The following example transfers control from the main program to
PROG.SAV, on DTO, passing it variables.

REALX FROGNM(2) 'RADS0 FOR FROGRAM NAME
COMMON /BLK1/ AsEyC»D 'DATA TO BE FASSED
DATA FROGNM/2RDTOFROG. .. .SAV/

.

CALL CHAIN(FROGNM»A»8) 'RUN DTO:FROG.SAV

CHAIN(FROGN» »0) 'IF NO DATA FASSED
CLOSEC

4.3.3 CLOSEC

The CLOSEC subroutine terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated
device must be in memory. CLOSEC cannot be called from a completion
or interrupt routine.

Form: CALL CLOSEC (chan)
where: chan is the channel number to be closed. This
argument must be 1located so that the USR
cannot swap over it.
A CLOSEC or PURGE must eventually be issued for any channel opened for
either input or output. A CLOSEC call specifying a channel that is
not open is ignored.
A CLOSEC performed on a file that was opened via an IENTER causes the
device directory to be updated to make that file permanent. If the

4-24

SYSTEM SUBROUTINE LIBRARY

device associated with the specified channel already contains a file
with the same name and type, the old copy is deleted when the new file
is made permanent. A CLOSEC on a file opened via LOOKUP does not
require any directory operations.

When an entered file is CLOSECed, its permanent length reflects the
highest block of the file written since the file was entered; for
example, if the highest block written is block number 0, the file |is
given a length of 1; if the file was never written, it is given a
length of 0. If this length is 1less than the size of the area
allocated at IENTER time, the unused blocks are reclaimed as an empty
area on the device.

Errors:

CLOSEC does not generate any errors. If the device handler for the
operation is not in memory, a fatal monitor error is generated.

Example:
The following example creates and processes a 56-block file.

REAL%4 DERLK(2)
DATA DRLK/6RSYONEWs 6RFILDAT/
DATA ISIZE/S6/

.

ICHAN=IGETC ()

IF(ICHAN.LT.0) GOTO 100

IF (IENTER(ICHAN»DBLK,ISIZE)-1) 1051105120
10 .

.

CALL CLOSEC(ICHAN)
CALL IFREEC(ICHAN)
CALL EXIT
100 STOF ‘NUO AVAILABRLE CHANNELS’
110 STOF ‘CHANNEL ALREADY IN USE’
120 STOF ‘NOT ENOUGH ROOM ON DEVICE’
END

CONCAT

4.3.4 CONCAT
The CONCAT subroutine is used to concatenate character strings.

Form: CALL CONCAT (a,b,out[,len[,errl])

where: a is the array containing the left string.
b is the array containing the right string.
out is the array 1into which the concatenated

result 1is placed. This array must be at
least one element 1longer than the maximum
length of the resultant string (that is, one
greater than the value of len, if specified).

SYSTEM SUBROUTINE LIBRARY

len is the integer number of characters
representing the maximum length of the output
string. The effect of len is to truncate the
output string to a given length, if
necessary.

err is the logical error flag set if the output
string is truncated to the length specified
by len.

The string in array a immediately followed on the right by the string
in array b and a terminating null character replaces the string in
array out. Any combination of string arguments is allowed so long as
b and out do not specify the same array. Concatenation stops either
when a null character is detected in b or when the number of
characters specified by len has been moved.

If either the left or right string is a null string, the other string
is copied to out. If both are null strings, then out is set to a null
string. The old contents of out are lost when this routine is called.

Errors:

Error conditions are indicated by err, if specified. If err is given
and the output string would have been longer than len characters, then
err is set to .TRUE.; otherwise, err is unchanged.

Example:

The following example concatenates the string in array STR and the
string in array IN and stores the resultant string in array OUT. OUT
cannot be larger than 29 characters.

LOGICALX1 INC30),0UT(30)ySTR(7)

.

CALL CONCAT(STFR»INyQUT,»29)

CVTTIM

4.3.5 CVTTIM

The CVTTIM subroutine converts a two-word internal format time to
hours, minutes, seconds, and ticks.

Form: CALL CVTTIM (time,hrs,min,sec,tick)
where: time is the two-word internal format time to be

converted. If time 1is considered as a
two-element INTEGER*2 array, then:

time (1) is the high-order time.
time (2) is the low-order time.
hrs is the integer number of hours.
min is the integer number of minutes.
sec is the integer number of seconds.

SYSTEM SUBROUTINE LIBRARY

tick is the integer number of ticks (1/60 of a
second for 60-cycle clocks; 1/50 of a second
for 50-cycle clocks).

Errors:
None.

Example:

INTEGERX4 1TIME

.

.

CALL GTIMCITIMED IGET CURRENT TIME-OF-DAY
CALL CUTTIM{ITIMEsIHRSyIMINs ISEC,ITCK)
IF(IHRS.GE. L2) GOTO 100 ITIME FOR LUNCH

DEVICE

4.3.6 DEVICE (FB and XM Only)

The DEVICE subroutine allows the user to set up a list of addresses to
be loaded with specified values when the program is terminated. If a
job terminates or is aborted with a CTRL/C from the terminal, this
list 1is picked up by the system and the appropriate addresses are set
up with the corresponding values.

This function is primarily designed to allow user programs to load
device registers with necessary values. In particular, it is used to
turn off a device's interrupt enable bit when the program servicing
the device terminates.

Only one address list can be active at any given time; hence, if
multiple DEVICE calls are issued, only the last one has any effect.
The list must not be modified by the FORTRAN program after the DEVICE
call has been issued, and the list must not be located in an overlay
or an area over which the USR swaps.

The second argument of the call (link) provides support for a linked
list of tables. The link argument is optional and causes the first
word of the list to be processed as the link word.

Form: CALL DEVICE (ilist[,link])

where: ilist is an integer array containing address/value
pairs, terminated by a zero word. On program
termination, each value is moved to the
corresponding address.

link an optional argument that is any value to
indicate a linked list table is to be used.

If the linked list form 1is wused the first
word of the array is the link list pointer.

For more information on loading values into device registers, see the
assembly language .DEVICE request, Section 2.4.11.

SYSTEM SUBROUTINE LIBRARY

Errors:

None.

Example:
INTEGERX2 IDR11(3) 'DEVICE ARRAY SFEC
DATA IDRL11C1)/°167770/ 'DR11 CSR ADDRESS (OCTAL)
DATA IDR11<¢(2)/0/ 'VALUE TO CLEAR INTERRUFT ENARLE
DATA IDR11(3)/0/ 'ANI' END-OF-LIST FLAG
CALL DEVICECIDRI11) 'SET UF FOR ARORT

DJFLT

4.3.7 DJFLT

The DJFLT function converts an INTEGER*4 value into a REAL*S (DOUBLE
PRECISION) value and returns that result as the function value.

Form: d = DJFLT (jsrc)

where: jsrc specifies the INTEGER*4 variable which is to
be converted.

Notes:

If DJFLT is used, it must be explicitly defined (REAL*8 DJFLT) or
implicitly defined (IMPLICIT REAL*8 (D)) in the FORTRAN program. If
this is not done, its type is assumed to be REAL*4 (single precision).
Function Results:

The function result is the REAL*8 value that is the result of the
operation.

Example:
INTEGERX4 JVAL
REALX8 DJFLT»D
D=DJFLT(JVAL)
GETSTR

4.3.8 GETSTR

The GETSTR subroutine reads a formatted ASCII record from a specified
FORTRAN logical wunit into a specified array. The data is truncated
(trailing blanks removed) and a null byte is inserted at the end to
form a character string.

GETSTR can be used in main program routines or in completion routines
but cannot be used in both at the same time. If GETSTR is used in a
completion routine, it cannot be the first I/0 operation on the
specified logical unit.

SYSTEM SUBROUTINE LIBRARY

Form: CALL GETSTR (lun,out,len,err)

where: lun is the integer FORTRAN logical unit number of
a formatted sequential file from which the
string is to be read.

out is the array to receive the string; this
array must be one element longer than len.

len is the 1integer number representing the
maximum length of the string to be input.

err is the LOGICAL*1 error flag that is set to
.TRUE if an error occurred. If an error did
not occur, it is .FALSE.

Errors:

Error conditions are indicated by err. If err is .TRUE, the values
returned are as follows:

ERR = -1 End of file for a read operation

ERR = -2 Hard error for a read operation

ERR = -3 More than len bytes were contained in a record.
Exanmple:

The following example reads a string of up to 80 characters from
logical unit 5 into the array STRING.

LOGICAL X1 STRING(81)ERR

.

CALL GETSTR(5,STRING,80yERR)

GTIM

4.3.9 GTIM

The GTIM subroutine allows user programs to access the current time of
day. The time is returned in two words and is given in terms of clock
ticks past midnight. If the system does not have a 1line «clock, a
value of 0 is returned. If an RT-11 monitor TIME command has not been
entered, the value returned is the time elapsed since the system was
bootstrapped, rather than the time of day.

Form: CALL GTIM (itime)
where: itime is the two-word area to receive the time of day.

The high-order time is returned in the first word, the low-order time
in the second word. The SYSF4 routine CVTTIM (Section 4.3.5) can be
used to convert the time into hours, minutes, seconds and ticks.
CVTTIM performs the conversion based on the monitor configuration word
for 50- or 60-cycle clocks (see Section 2.2.6). Under an FB or XM
monitor, the time-of-day is automatically reset after 24:00 when a
GTIM is executed; under the single-job monitor, it is not.

SYSTEM SUBROUTINE LIBRARY

Errors:
None.
Example:
INTEGERX4 JTIME
CALL GTIMCJTIME)
GTJB

4.3.10 GTJB

The GTJB subroutine passes certain job parameters back to the user
program.

Form: CALL GTJB (addr)

where: addr is an eight-word area to receive the job
parameters. This area, considered as ~an
eight-element INTEGER*2 array, has the
following format:

addr (1) job number . (O=background,
2=foreground)

addr (2) high memory limit

addr (3) low memory limit

addr (4) beginning of I/0 channel space

addr (5) - reserved for future use

addr (8)

For more information on passing job parameters, see the assembly
language .GTJB request, Section 2.4.

Errors:
None.

Example:

INTEGERX2 FARAMS(8)
CALL GTJRBR(FARAMS)
IF(FARAMS (1) .EQ.0) TYFE 99
?9 FORMAT (’ THIS IS THE BACKGROUND JOR’)

GTLIN

4.3.11 GTLIN

The GTLIN subroutine requires the USR. It transfers a line of input
from the console terminal or an active indirect command file to the
user program. This request is used to get information from the user,
and it allows the program to operate through indirect files. The
maximum size of the input line is 80 characters.

SYSTEM SUBROUTINE LIBRARY

Form: CALL GTLIN (result[,prompt])

where: result is the array receiving the string. This
LOGICAL*1 array contains a maximum of 80
characters plus 0 as the end indicator.

prompt is an optional prompt string to be printed
before getting the 1input line. The string
format is the same as that used by the PRINT
subroutine.
Errors:

None

IADDR

4.3.12 IADDR

The IADDR function returns the 16-bit absolute memory address of its
argument as the integer function value.

Form: 1 = IADDR (arg)

where: arg is the wvariable, constant, or expression
whose memory address is to be obtained.
Errors:
None.
Example:

IADDR can be used to find the address of an assembly language global
area. For example:

EXTERNAL. CAREA
J=TADDR (CAREA’

IAJFLT

4.3.13 IAJFLT

The IAJFLT function converts an INTEGER*4 value to a REAL*4 value and
stores the result.

Form: 1i = IAJFLT (jsrc,ares)
where: jsrc is the INTEGER*4 variable to be converted.

ares is the REAL*4 variable or array element to
receive the converted value.

4-31

SYSTEM SUBROUTINE LIBRARY

Function Results:

The function result indicates the following:

i= -2 Significant digits were lost during the
conversion.
= -1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.
Example:

INTEGERX4 JVAL
REAL %4 RESULT

.

IF(IAJFLT(JVALYRESULT) JEQ.~-2) TYFE 99
?9 FORMAT (7 OVERFLOW IN INTEGER%4 TO REAL CONVERSION’)

IASIGN

4.3.14 1IASIGN

The IASIGN function sets information in the FORTRAN logical unit table
(overriding the defaults) so that the specified information is used
when the FORTRAN Object Time System (OTS) opens the 1logical unit.
This function can be used with ICSI (see Section 4.3.18) to allow a
FORTRAN program to accept a standard CSI input specification. IASIGN
must be called before the unit is opened; that is, before any READ,
WRITE, PRINT, TYPE, or ACCEPT statements are executed that reference
the logical unit.

Form: 1 = IASIGN (lun,idev([,ifiltyp(,isize[,itype]]])

where: lun is an INTEGER*2 variable, constant, or
expression specifying the FORTRAN 1logical
unit for which information is being
specified.

idev is a one-word Radix-50 device name; this can
be the first word of an ICSI input or output
file specification.

ifiltyp is a three-word Radix-50 file name and file
type; this can be words 2 through 4 of an
ICSI input or output file specification.

isize is the length (in blocks) to allocate for an
output file; this can be the fifth word of
an ICSI output specification. If 0, the

larger of either one-half the largest empty
segment or the entire second largest empty
segement 1is allocated (see Section 2.4). 1If
the value specified for 1length is =1, the
entire largest empty segment is allocated.

SYSTEM SUBROUTINE LIBRARY

itype is an integer value determining the optional
attributes to be assigned to the file. This
value is obtained by adding the values that
correspond to the desired operations:

1 use double buffering for output

2 open the file as a temporary file

4 Force a LOOKUP on an existing file
during the first 1/0 operation

(otherwise, the first FORTRAN 1/0
operation determines how the file is
opened). For example, if the next 1I/0
operation 1is a write, an IENTER |is
performed on the specified logical unit.
A read causes a LOOKUP.

8 expand carriage control information (see
Notes below)

16 do not expand carriage control
information

32 file is read-only

Notes:

Expanded carriage control information applies only to formatted output
files and means that the first character of each record is used as a
carriage control character when processing a write operation to the
given 1logical unit. The first character is removed from the record
and converted to the appropriate ASCII characters to simulate the
requested carriage control.

If carriage control information is not expanded, the first character
of each record is unmodified and the FORTRAN OTS outputs a line feed,
followed by the record, followed by a carriage return.

If carriage control is unspecified, the FORTRAN OTS sends expanded
carriage control information to the terminal and line printer and
sends unexpanded carriage control information to all other devices and
files. See the PDP-11 FORTRAN Language Reference Manual for further
carriage control information.

Function Results:

i=20 Normal return.
<> 0 The specified logical unit is already in use or
there is no space for another 1logical unit
association.
Example:

The following example creates an output file on logical unit 3 using
the first output file given to the RT-11 Command String Interpreter
(CSI), sets it up for double buffering, creates an input file on
logical wunit 4 based on the first input file specification given to
the RT-11 CSI, and makes it available for read-only access.

SYSTEM SUBROUTINE LIBRARY

INTEGERX2 SFEC(39)
REALX4 EXT(2)
DATA EXT/6RDATDAT » 6RDATOAT/ 'DEFAULT FILE TYFE IS DAT

.

0 IFC(ICSI(SFEC»TYFy»50).NE.O) GOTO 10

1
C
(DO NOT ACCEFT ANY SWITCHES
C
CALL IASIGN(3»SFEC(1)sSFEC(2)»ySFEC(S) 1)
CALL TASIGN(4sSFEC(16)sSPEC(17)5,0,32)
ICDFN

4.3.15 ICDFN

The ICDFN function increases the number of input/output channels.
Note that ICDFN defines new channels; the previously-defined channels
are not used. Thus, an ICDFN for 20 channels (while the 16 original
channels are defined) causes only 20 I/0 channels to exist; the space
for the original 16 is unused. The space for the new channel area is
allocated out of the free space managed by the FORTRAN system.

Form: i = ICDFN (num)

where: num is the integer number of channels to be
allocated. The number of channels must be
greater than 16 and can be a maximum of 256.
SYSF4 can use all new channels greater than
16 without a call to 1IGETC; the FORTRAN
system input/output uses only the first 16
channels. This argument must be positioned
so that the USR cannot swap over it.

1. ICDFN cannot be 1issued from a completion or interrupt
routine.

2. It is recommended that the ICDFN function be used at the
beginning of the main program before any I/0 operations are
initiated.

3. If ICDFN is executed more than once, a completely new set of
channels is created each time ICDFN is called.

4. ICDFN requires that extra memory space be allocated to
foreground programs (see Section 4.1.4).

Function Results:

i=0 Normal return.
=1 An attempt was made to allocate fewer channels
than already exist.
= 2 Not enough free space is available for the channel
area.

Example:

IFCICDFN(24) \NE.O) STOF ‘NOT ENOUGH MEMORY’

4-34

SYSTEM SUBROUTINE LIBRARY

ICHCPY

4.3.16 ICHCPY (FB and XM Only)

The ICHCPY function opens a channel for input, logically connecting it
to a file that is currently open by another job for either input or
output. This function can be used by either the foreground or the
background. An ICHCPY must be done before the first read or write for
the given channel.

Form: 1 = ICHCPY (chan,ochan)

where: chan is the channel the job will use to read the
data.
ochan is the channel number of the other job that

is to be copied.

Notes:

1. If the other job's channel was opened via an IENTER function
or a .ENTER programmed request to create a file, the copier's
channel indicates a file that extends to the highest block
that the creator of the file had written at the time the
ICHCPY was executed.

2. A channel that is open on a sequential-access device should
not be copied, because buffer requests can become intermixed.

3. A program can write to a file (that is being created by the
other job) on a copied channel just as it could if it were
the creator. When the copier's channel is closed, however,
no directory update takes place.

Errors:
i=0 Normal return.
=1 Other job does not exist or does not have the
specified channel (ochan) open.
= 2 Channel (chan) is already open.

ICMKT

4.3.17 ICMKT

The ICMKT function causes one or more scheduling requests (made by an
ISCHED, ITIMER or MRKT routine) to be cancelled. Support for ICMKT in
SJ also requires timer support.

Form: 1 = ICMKT (id,time)

where: id is the identification integer of the request
to be cancelled. If id is equal to 0, all
scheduling requests are cancelled.

time is the name of a 2-word area 1in which the
monitor returns the amount of time remaining
in the cancelled request.

SYSTEM SUBROUTINE LIBRARY

For further information on cancelling scheduling requests, see the
assembly language .CMKT request, Section 2.4.

Errors:
i=0 Normal return.
=1 id was not equal to 0 and no schedule request with
that identification could be found.
Example:
INTEGERX4)
CALL ICMKTC(Oy.1) '"ARORT ALL TIMER REQUESTS NOW
END
ICSI

4.3.18 1ICSI

The ICSI function calls the RT-11 Command String 1Interpreter in
special mode to parse a command string and return file descriptors and
options to the program. 1In this mode, the CSI does not perform any
handler IFETCHes, CLOSECs, IENTERs, or LOOKUPs. An optional argument
(cstring) provides ICSI with the capability of returning the original
command string. This argument is allowed only when the input is from
the console terminal. 1ICSI cannot be called from a completion or
interrupt routine.

Form: i = ICSI (filspc,deftyp,[cstring],[option],x)

where: filspc is the 39-word area to receive the file
specifications. The format of this area
(considered as a 39-element INTEGER*2 array)
is:

filspc(l) - output file number 1
filspc(4) specification

filspc(5) output file number 1 length
filspc(6)- output file number 2
filspc(9) specification

filspc(10) output file number 2 length
filspc(11l) - output file number 3
filspc(14) specification

filspc(15) output file number 3 length
filspc(16) - input file number 1
filspc(19) specification

filspc(20)- input file number 2
filspc(23) specification

filspc(24)- input file number 3
filspc(27) specification

4-36

SYSTEM SUBROUTINE LIBRARY

filspc(28) - input file number 4
filspc(31) specification
filspc(32)- input file number 5
filspc(35) specification
filspc(36) - input file number 6
filspc(39) specification

deftyp is the table of Radix-50 default file types
to be assumed when a file is specified
without a file type.
deftyp(l) is the default for all input file
types.
deftyp(2) is the default file type for output
file number 1.
deftyp(3) is the default file type for output
file number 2.
deftyp(4) is the default file type for output
file number 3.

cstring is the area that contains the ASCIZ command
string to be interpreted; the string must
end in a zero byte. If the argument is
omitted, the system prints the prompt
character (*) at ‘the terminal and accepts a
command string.

option is the name of an INTEGER*2 array dimensioned
(4,n) where n represents the number of
options defined to the program. This

argument must be present if the value
specified for "x" is non-zero. This array
has the following format for the nth option
described by the array.

option(l,n) is the one-character ASCII name
of the option.

option(2,n) is set by the routine to 0, 1if
the option did not occur; to
1, 1if the option occurred
without a value; to 2, if the
option occurred with a value.

option(3,n) is set to the file number on
which the option is specified.

option(4,n) is set to the specified value if
option(2,n) is equal to 2.

X is the number of options defined in the array
"option".
Notes:
The array "option" must be set up to contain the names of the wvalid

options. For example, use the following to set up names for five
options:

INTEGER%2 SW(4,5)

DATA SW(1,1)/7S’/»SW(192)/'M*/»SW(Ls3)/" 1"/
DATA SW(1,4)/'L’/»SW(1»3)/'E"/

4-37

SYSTEM SUBROUTINE LIBRARY

Multiple occurrences of the same option are supported by allocating an
entry in the option array for each occurrence of the option. Each

time the option occurs in the option array, the next unused entry for
the named option is used.

The arguments of ICSI must be positioned so that the USR cannot swap
over them.

For more information on calling the Command String Interpreter, see
the assembly language .CSISPC request, Section 2.4.

Errors:
i=20 Normal return.
=1 Illegal command line; no data was returned.
= 2 An illegal device specification occurred 1in the
string.
=3 An illegal option was specified, or a given option
was specified more times than were allowed for in
the option array.
Example:

The following example causes the program to loop until a valid command
is typed at the console terminal.

INTEGERX2 SFEC(39)
REALX4 EXT(2)
DATA EXT/6RDATDAT» 6RDATDAT/

.

10 TYFE 99

9?9 FORMAT (’ ENTER VALID CSI STRING WITH NO OFTIONS
IF(ICSI(SFECYEXT»»50).NE.O) GOTO 10

ICSTAT

4.3.19 ICSTAT (FB and XM Only)

The ICSTAT function furnishes the user with information about a
channel. It is supported only in the FB or XM environment; no
information is returned when operating under the single-job monitor.

Form: i = ICSTAT (chan,addr)
where: chan is the channel whose status is desired.

addr is a six-word area to receive the status
information. The area, as a six-element
INTEGER*2 array, has the following format.

addr (1) channel status word (see
Section 2.4)

addr (2) starting absolute block number
of file on this channel

addr (3) 1length of file

addr (4) highest block number written
since file was opened (see
Section 2.4)

4-38

SYSTEM SUBROUTINE LIBRARY

addr (5) unit number of device with
which this channel is
associated

addr (6) Radix-50 of device name with
which the channel is associated

Errors:

0 Normal return.
Channel specified is not open.

i

nn
—

Example:

The following example obtains channel status information about channel
I.

INTEGERX2 AREA(6)
I=7
IF(ICSTAT(IsAREA) .NE.O) TYFE 9951
?9 FORMAT (1Xy “CHANNEL " yI4, IS NOT OFEN’)

IDELET

4.3.20 IDELET

The IDELET function deletes a named file from an indicated device.
Since this routine passes information to the USR, provisions must be
made to prevent information required by the USR from being swapped.
This is accomplished by moving all parameters to the stack and
pointing to these parameters in the program request. IDELET cannot be
issued from a completion or interrupt routine.

Form: i = IDELET (chan,dblk[,segnum])

where: chan is the channel to be used for the delete
operation.
dblk is the four-word Radix-50 specification

(dev:filnam.typ) for the file to be deleted.

segnum file number for cassette operations: if this
argument is blank, a value of 0 is assumed.

For magtape operation, it describes a file
sequence number that can have the following
values:

Value Meaning

-1 For LOOKUP or IDELET, this value
suppresses rewinding and searching for a
file name from the current tape
position. Note that if the position is
unknown, the handler executes a
positioning algorithm that involves
backspacing until an end-of-file label
is found. The user should not use any
other value since all other negative
values are reserved for future use.

SYSTEM SUBROUTINE LIBRARY

0 For LOOKUP or IDELET, this value rewinds
the magtape and spaces forward until the
file name 1is found. For .(ENTER it
rewinds the magtape and spaces forward
until the file name is found or until
the logical end of tape is detected. If
the file name is found, it is deleted
and tape search continues.

n Where n is any positive number. This
value positions the magtape at file
sequence number n. If the file

represented by the file sequence number
is greater than two files away from the
beginning of tape, a rewind is
performed. If not, the tape is
backspaced to the file.

NOTE

The arguments of IDELET must be
located so that the USR cannot
swap over them.

The specified channel is left inactive when the IDELET is complete.
IDELET requires that the handler to be used be resident (via an IFETCH
call) at the time the IDELET is issued. If it is not, a monitor error
occurs.

For further information on deleting files, see the assembly 1language
.DELETE request, Section 2.4.

Errors:
i=20 Normal return.
=1 Channel specified is already open.
=2 File specified was not found.
=3 Device is use
Example:

The following example deletes a file named FTNS.DAT from SYO.

REALX4 FILNAM(2)
DATA FILNAM/6RSYOFTNy»é&RS DAT/

.

.

I=IGETC()

IF(I.LT.0) STOF ‘NO CHANNEL’
CALL IDELET(IsFILNAM)

CALL IFREEC(I)

IDJFLT

4.3.21 IDJFLT

The IDJFLT function converts an INTEGER*4 value into a REAL*8 (DOUBLE
PRECISION) value and stores the result.

4-40

SYSTEM SUBROUTINE LIBRARY

Form: 1i = IDJFLT (jsrc,dres)

where: jsrc specifies the INTEGER*4 variable that 1is to
be converted.

dres specifies the REAL*8 (or DOUBLE PRECISION)
variable to receive the converted value.

Function Results:

The function result indicates the following:

i=-1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.
Example:

INTEGER*4 JJ
REAL%8 D14

*

IFCIDJFLT(JJY D) LE.O) TYFE 99
99 FORMAT (’ VALUE IS NOT FOSITIVE’)

IDSTAT

4.3.22 IDSTAT

The IDSTAT function is used to obtain information about a particular
device. IDSTAT cannot be issued from a completion or interrupt
routine.

Form: 1i = IDSTAT (devnam,cblk)

where: devnam is the Radix-50 device name.
cblk is the four-word area used to store the
status information. The area, as a

four-element INTEGER*2 array, has the
following format:

cblk (1) device status word (see Section
2.4.13)

cblk(2) size of handler in bytes

cblk (3) entry point of handler
(non-zero implies that the
handler is in memory)

cblk (4) size of the device (in 256-word
blocks) for block-replaceable
devices; zero for
sequential-access devices

NOTE

The arguments of IDSTAT must be
positioned so that the USR cannot
swap over them.

SYSTEM SUBROUTINE LIBRARY

IDSTAT looks for the device specified by devnam and, if found, returns
four words of status in cblk. Errors:

i 0 Normal return.

1 Device not found in monitor tables.

Example:

The following example determines whether the line printer handler is

in memory. If it is not, the program stops and prints a message to
indicate that the handler must be loaded.

REALX4 IDONAM

INTEGERX2 CERLK(4)

DATA IDNAM/3IRLF /

DATA CELK/4%0/

CALL IDSTAT(IDNAMyCELK)

IF(CBLK(3) JEQ.0) STOF ‘1.O0ADL THE LF HANIILER ANDN RERUN’

IENTER

4.3.23 IENTER

The IENTER function allocates space on the specified device and
creates a tentative directory entry for the named file. If a file of
the same name already exists on the specified device, it is not
deleted until the tentative entry is made permanent by CLOSEC. The
file is attached to the channel number specified.

Form: i = IENTER (chan,dblk,length[,seqnum])

where: chan is the integer specification for the RT-11
channel to be associated with the file.

dblk is the four-word Radix-50 descriptor of the
file to be operated upon.

length is the integer number of blocks to be
allocated for the file. 1If 0, the larger of
either one-half the largest empty segment or
the entire second largest empty segment is
allocated (see Section 2.4.14). If the value
specified for length is -1, the entire
largest empty segment is allocated.

segnum file number for cassette. If this argument
is blank, a value of 0 is assumed.

For magtape, it describes a file sequence
number that can have the following values:

-1 - means space to the logical-end-of-tape
and enter file

0 - means rewind the magtape and space
forward wuntil the file name is found or
the logical-end-of-tape is detected. 1If
file name is found, delete it and
continue tape search.

SYSTEM SUBROUTINE LIBRARY

n - means position magtape at file sequence
number n. If the file represented by
the file sequence number is greater than
two files away from beginning of tape,
then a rewind is performed. If not, the
tape is backspaced to the file.

1. IENTER cannot be 1issued from a completion or interrupt
routine.

2. 1IENTER requires that the appropriate device handler be in
memory.

3. The arguments of IENTER must be positioned so that the USR
does not swap over them.

For further information on creating tentative directory entries, see
the assembly language .ENTER request, Section 2.4.

Errors:
i= n Normal return; number of blocks actually
allocated (n = 0 for nonfile-structured IENTER).
= -1 Channel (chan) is already in use.
= -2 In a fixed-length request, no space greater than
or equal to length was found.
= -3 Device in use
= -4 File sequence number not found
Example:

The following example allocates a channel for file TEMP.TMP on Y0. If
no channel is available, the program prints a message and halts.

REALX4 DIRLK(2)

DATA DRLK/6RSYOTEMy6RF TMF/

ICHAN=TIGETC ()

IFCICHAN.LT.0) STOF “NO AVAILARLE CHANNEL’

CREATE TEMFORARY WORK FILE

OO0

IFCIENTERCICHANY DRLK»20) .LT.0) STOF ‘ENTER FAILURE’

.

CALL PURGE(ICHAN)
CALL IFREECCICHAN)

IFETCH

4.3.24 IFETCH

The IFETCH function loads a device handler into memory from the system
device, making the device available for input/output operations. The
handler is loaded into the free area managed by the FORTRAN system.
Once the handler 1is loaded, it cannot be released and the memory in
which it resides cannot be reclaimed. IFETCH cannot be issued from a
completion or interrupt routine.

SYSTEM SUBROUTINE LIBRARY

Form: i = IFETCH (devnam)

where: devnam is the one-word Radix-50 name of the device
for which the handler is desired. This
argument can be the first word of an 1ICSI
input or output file specification. This
argument must be positioned so that the USR
cannot swap over it.

For further information on loading device handlers into memory, see
the assembly language .FETCH request, Section 2.4.16.

Errors:
i=20 Normal return.
=1 Device name specified does not exist.
= 2 Not enough room exists to load the handler.
=3 No handler for the specified device exists on the
system device.
Example:

The following example requests the DX1 handler to be loaded into
memory; execution stops if the handler cannot be loaded.

REAL%4 IDNAM
DATA IDNAM/3RDX1/

.

.

IF (IFETCHCIDNAM) JNE.O) STOF ‘FATAL ERROR FETCHING HANDLER’

IFREEC

4.3.25 IFREEC

The IFREEC function returns a specified RT-11 channel to the available
pool of channels. Before IFREEC is called, the specified channel must
be closed or deactivated with a CLOSEC (see Section 4.3.3) or a PURGE
(see Section 4.3.66) call. IFREEC cannot be called from a completion
or interrupt routine. IFREEC calls must be issued only for channels
that have been successfully allocated by IGETC calls; otherwise, the
results are unpredictable.

Form: i = IFREEC (chan)

where: chan is the integer number of the channel to be
freed.
Errors:
i=0 Normal return.
=1 Specified channel is not currently allocated.

Example:

See the example under IGETC, (Section 4.3.26).

SYSTEM SUBROUTINE LIBRARY

IGETC

4.3.26 IGETC

The IGETC function allocates an RT-11 channel (in the range 0-17
octal) and marks it in use for the FORTRAN I/0 system. IGETC cannot
be issued from a completion or interrupt routine.

Form: 1 = IGETC()

Function Results:

i= -1 No channels are available.
= n Channel n has been allocated.
Example:
ICHAN=IGETC () IALLOCATE CHANNEL

IFCICHAN.LT.0) STOF ‘CANNOT ALLOCATE CHANNEL’

.

.

CALL IFREEC(ICHAN) IFREE IT WHEN THROUGH

.

.

END

IGETSP

4.3.27 1IGETSP

The IGETSP subroutine returns the address and size (number of words)
of free space obtained from the FORTRAN system. When this space is
obtained, it is allocated for the duration of the program.

Form: i = IGETSP (min,max,iaddr)

where: min is the minimum space to be obtained without
an error indicating that the desired amount
of space is not available.

max is the maximum space to be obtained without
an error indicating that the desired amount
of space is not available.

iaddr is the integer specifying the address of the
start of the free space (buffer).

FPunction Results:

i=-1 Error: not enough free space is available to meet
the minimum requirements; no allocation was taken
from the FORTRAN system free space.

i=n is the actual size allocated whose value is
min .GE. n .LE. max.

4-45

SYSTEM SUBROUTINE LIBRARY

The size (min, max, n) is specified in words. Extreme caution should
be exercised to avoid using all of the free space allocated by the
FORTRAN system. If the FORTRAN system runs out of dynamic free space,
fatal errors (Error 29, 30, 42, etc.) occur.

IJCVT

4.3.28 IJCVT

The IJCVT function converts an INTEGER*4 value to INTEGER*2 format.
If 1ires 1is not specified, the result returned is the INTEGER*2 value
of jsrc. 1If ires is specified, the result is stored there.

Form: i = IJCVT (jsrc[,ires])

where: jsrc specifies the INTEGER*4 variable or array
element whose value is to be converted.

ires specifies the INTEGER*2 entity to receive the
conversion result.

Function results if ires is specified:

i= =2 An overflow occurred during conversion.
= -1 Normal return; the result is negative.
=0 Normal return; the result is 0.
=1 Normal return; the result is positive.

Example:

INTEGER%4 JVAL
INTEGERX2 IVAL

.

IF(IJCVT(JVAL Yy IVAL) .EQ.-2) TYFE 99
99 FORMAT (* NUMERER TOO LARGE IN IJCVT CONVERSION’)

ILUN

4.3.29 ILUN

The ILUN function returns the RT-11 channel number with which a
FORTRAN logical unit is associated.

Form: i = ILUN (lun)

where: lun is an integer expression whose value is a
FORTRAN 1logical wunit number in the range
1-99.

Function Results:

i=-1 Logical unit is not open.
= =2 Logical unit is opened to console terminal.
= +n RT-11 channel number n is associated with lun.

SYSTEM SUBROUTINE LIBRARY

Example:
PRINT 99

99 FORMAT(’ FRINT DEFAULTS TO LOGICAL UNIT &, WHICH FURTHER DEFAULTS TO LP:’)
LUNRT=ILUN(6) 'WHICH RT-11 CHANNEL IS RECEIVING 1/07

INDEX

4.3.30 INDEX

The INDEX subroutine searches a string for the occurrence of another
string and returns the character position of the first occurrence of
that string.

Form: CALL INDEX (a,pattrn,(i],m)

or

m = INDEX (a,pattrn[,i])

where: a is the array containing the string to be
searched.
pattrn is the string being sought.
i is the integer starting character position of

the search in a. If i is omitted, a is
searched beginning at the first character
position.

m is the integer result of the search; m
equals the starting character position of
pattrn in a, if found; otherwise it is 0.
Errors:
None.
Example:
The following example searches the array STRING for the first

occurrence of strings EFG and XYZ and searches the string ABCABCABC
for the occurrence of string ABC after position 5.

CALL SCOFY(’ARCIHEFGHI’»STRING) 'INITIALIZE STRING
CALL INDEX(STRING»s 'EFG’ysM) IM=5
CALL INDEX(STRING»’XYZ’ysN) IN=0

CALL INDEX(’ARCARCABC’»y’ARC’ySyL) IL=7

INSERT

4.3.31 INSERT

The INSERT subroutine replaces a portion of one string with another
string.

Form: CALL INSERT (in,out,i[,m])

4-47

SYSTEM SUBROUTINE LIBRARY

Example:
EXTERNAL CLKSUR 'SUBR TO HANDLE KW11-P CLOCK
I=INTSET(*104y6y0»CLKSUR) 'ATTACH ROUTINE
IF (I.NE.O) GOTO 100 'RRANCH IF ERROR
END

SUEROUTINE CLKSURCID)

.

END

IPEEK

4.3.33 IPEEK

The IPEEK function returns the contents of the word located at a
specified absolute 16-bit memory address. This function can be used
to examine device registers or any location in memory.

Form: i = IPEEK (iaddr)

where: iaddr is the integer specification of the absolute
address to be examined. If this argument is
not an even value, a trap results.

Function Result:

The function result (i) is set to the value of the word examined.

Example:

ISWIT = IPEEK(®*177570) 'GET VALUE OF CONSOLE SWITCHES

IPEEKB

4.3.34 1IPEEKB

The IPEEKB subroutine returns the contents of a byte 1located at a
specified absolute byte address. Since this routine operates in a
byte mode, the address supplied can be even or odd. This subroutine
can be used to examine device registers or any byte in memory.

Form: i = IPEEKB (iaddr)

where: iaddr is the integer specification of the absolute
byte address to be examined. Unlike the
IPEEK subroutine, the IPEEKB subroutine
allows odd addresses.

Function Result:

The function result (i) is set to the value of the byte examined.

4-50

SYSTEM SUBROUTINE LIBRARY

Example:

IERR = IFEEKER("S3) 'Get error bute

IPOKE

4.3.35 IPOKE

The IPOKE subroutine stores a specified 16-bit integer value into a
specified absolute memory location. This subroutine can be used to
store values in device registers.

Form: CALL IPOKE (iaddr,ivalue)
where: iaddr is the integer specification of the absolute

address to be modified. If this argument is
not an even value, a trap results.

ivalue is the integer value to be stored 1in the
given address (iaddr).
Errors:
None.
Example:

The following example displays the value of IVAL in the console
display register.

CALL IFOKE(®*177570yIVAL)

To set bit 12 in the JSW without zeroing any other bits in the JSW,
use the following procedure.

CALL. IFOKE(®44,"10000.0R.IFEEK("44))

IPOKEB

4.3.36 IPOKEB

The IPOKEB subroutine stores a specified eight-bit integer value into
a specified byte 1location. Since this routine operates in a byte
mode, the address supplied can be even or odd. This subroutine can be
used to store values in device registers.

Form: CALL IPOKEB (iaddr,ivalue)

where: iaddr is the integer specification of the absolute
address to be modified. Unlike the IPOKE
subroutine, the IPOKEB subroutine allows odd

addresses.

ivalue is the integer value to be stored in the
given address specified by the iaddr
argument.

SYSTEM SUBROUTINE LIBRARY

Errors:
None

Example: (see section 4.3.35)

IQSET

4.3.37 IQSET

The IQSET function is used to make the RT-11 queue larger (that is, to
add available elements to the queue). These elements are allocated
out of the free space managed by the FORTRAN system. IQSET cannot be
called from a completion or interrupt routine.

Form: i = IQSET (gleng)

where: gleng is the integer number of elements to be added
to the queue. This argument must be
positioned so that the USR does not swap over
it.

All RT-11 I/0 transfers are done through a centralized queue
management system. If I/O traffic is very heavy and not enough queue
elements are available, the program issuing the I/0 requests can be
suspended until a queue element becomes available. In an FB or XM
system, the other job runs while the first program waits for the
element. When IQSET is used in a program to be run in the foreground,
the FRUN command must be modified to allocate space for the queue
elements (see Section 4.1.4).

A general rule to follow is that each program should contain one more
queue element than the total number of I/0 and timer requests that
will be active simultaneously. Timing functions such as ITWAIT and
MRKT also cause elements to be used and must be considered when
allocating queue elements for a program. Note that if synchronous 1/0
is done (IREADW/IWRITW, etc.) and no timing functions are done, no
additional queue elements need be allocated. Note also that FORTRAN
IV allocates four queue elements. See Section 4.2 for a list of SYSF4
calls that use queue elements.

For further information on adding elements to the queue, see the
assembly language .QSET request, Section 2.4.

Function Results:

i=0 Normal return.
=1 Not enough free space is available for the number
of queue elements to be added; no allocation was
mades
Example:

IFCIQSET(3).NE.O) STOF ‘NOT ENOUGH FREE SFACE FOR QUEUE ELEMENTS’

SYSTEM SUBROUTINE LIBRARY

IRADSO

4.3.38 IRADS0

The IRAD50 function converts a specified number of ASCII characters to
Radix-50 and returns the number of characters converted. Conversion
stops on the first non-Radix-50 character encountered in the input or
when the specified number of ASCII characters have been converted.

Form: n = IRAD50 (icnt,input,output)

where: 1cnt is the number of ASCII characters to be
converted.
input is the area from which input characters are
taken.
output is the area into which Radix-50 words are
stored.

Three characters of text are packed into each word of output. The
number of output words modified 1is computed by the expression (in
integer words):

(icnt+2) /3

Thus, if a count of 4 is specified, two words of output are written
even if only a one-character input string is given as an argument.

Function Results:

The integer number of input characters actually converted (n) is
returned as the function result.

Example:

REALX8 FSFEC
CALL IRADS0(12y’SYOTEMF DAT’sFSFEC)

IRCVD/IRCVDC/IRCVDF/IRCVDW

4.3.39 IRCVD/IRCVDC/IRCVDF/IRCVDW(FB and XM Only)

There are four forms of the receive data function; these are used in
conjunction with the 1ISDAT (send data) functions to allow a general
data/message transfer system. The receive data functions issue RT-11
receive data programmed requests (see Section 2.4). These functions
require a queue element; this should be considered when the IQSET
function (Section 4.3.37) is executed.

IRCVD

The IRCVD function is used to receive data and continue execution.
The operation 1is queued and the issuing job continues execution. At
some point when the job must receive the transmitted message, an MWAIT

should be executed. This causes the job to be suspended until the
message has been received.

SYSTEM SUBROUTINE LIBRARY

Form: i = IRCVD (buff,wcnt)

where: buff is the array to be used to buffer the data
received. The array must be one word larger
than the message to be received because the
first word contains the integer number of
words actually transmitted when IRCVD is

complete.
wcnt is the maximum integer number of words that
can be received.
Errors:
i=0 Normal return.
=1 No other job exists in the system.
Example:
INTEGERX2 MSG(41)
CALL IRCVUD(MSGy40)
CALL MWAIT
IRCVDC

The IRCVDC function receives data and enters an assembly language
completion routine when the message is received. The IRCVDC is queued
and program execution stays with the issuing job. When the other job
sends a message, the completion routine specified is entered.

Form: 1 = IRCVDC (buff,wcnt,crtn)

where: buff is the array to be used to buffer the data
received. The array must be one word larger
than the message to be received because the
first word contains the integer number of
words actually transmitted when IRCVDC is

complete.

wcnt is the maximum integer number of words to be
received.

crtn is the assembly language completion routine

to be entered. This name must be specified
in a FORTRAN EXTERNAL statement in the
routine that issues the IRCVDC call.

Errors:

Normal return.
No other job exists in the system.

i

[l =]

IRCVDF

The IRCVDF function receives data and enters a FORTRAN completion
subroutine (see Section 4.2.1) when the message is received. The

4-54

SYSTEM SUBROUTINE LIBRARY

IRCVDF is queued and program execution continues with the issuing jgb.
When the other job sends a message, the FORTRAN completion routine
specified is entered.

Form: i = IRCVDF (buff,wcnt,area,crtn)

where: buff is the array to be used to buffer the data
received. The array must be one word larger
than the message to be received because the
first word contains the integer number of
words actually transmitted when IRCVDF is

complete.

wcnt is the maximum integer number of words to be
received.

area is a four-word area to be set aside for

linkage information. This area must not be
modified by the FORTRAN program and the USR
must not swap over it, This area can be
reclaimed by other FORTRAN completion
routines when crtn has been entered.

crtn is the FORTRAN completion routine to be
entered. This name must be specified in an
EXTERNAL statement in the FORTRAN routine
that issues the IRCVDF call.

Errors:
i=0 Normal return.
=] No other job exists in the system.

Example:

INTEGERX2 MSG(41)yAREA(4)

EXTERNAL RMSGRT

CALL IRCVIF(MSGy40yAREAYRMSGRT)
IRCVDW

The IRCVDW function is used to receive data and wait. This function
queues a message request and suspends the job issuing the request
until the other job sends a message. When execution of the issuing
job resumes, the message has been received, and the first word of the
buffer indicates the number of words transmitted.

Form: i = IRCVDW (buff,wcnt)

where: buff is the array to be used to buffer the data
received. The array must be one word larger
than the message to be received because the
first word contains the integer number of
words actually transmitted when IRCVDW is
complete.

wcnt is the maximum integer number of words to be
received.

4-55

SYSTEM SUBROUTINE LIBRARY

Errors:

i 0 Normal return.

1 No other job exists in the system.

Example:

INTEGER%2 MSG(41)
IFC(IRCVIW(MSG,40) JNE.O) STOF ‘UNEXFECTED ERRQFR

IREAD/IREADC/IREADF /IREADW

4.3.40 IREAD/IREADC/IREADF/IREADW

SYSF4 provides four modes of 1/0: IREAD/IWRITE, IREADC/IWRITC,
IREADF/IWRITF, and IREADW/IWRITW. These functions require a queue
element; this should be considered when the IQSET function (Section
4.3.37) is executed.

IREAD

The IREAD function transfers a specified number of words from the file
(first block of file = 0) associated with the indicated channel into
memory. Control returns to the user program immediately after the
IREAD function 1is initiated. No special action is taken when the
transfer is completed.

Form: 1 = IREAD (went,buff,blk,chan)

where: went is the relative integer number of words to be
transferred.

buff is the array to be used as the buffer. This
array must contain at least wcnt words.

blk is the relative integer block number of the
file to be read. The user program normally
updates blk before it is used again.

chan is the relative integer specification for the
RT-11 channel to be used.

NOTE

The blk argument must be updated, if
necessary, by the user program. For
example, if the program is reading
two blocks at a time, blk should be
updated by 2.

When the user program needs to access the data read on the specified
channel, an IWAIT function should be issued. This ensures that the
IREAD operation has been completed. If an error occurred during the
transfer, the IWAIT function indicates the error.

SYSTEM SUBROUTINE LIBRARY

Errors:
i=n Normal return; n equals the number of words read
(0 for non-file-structured read, multiple of 256
for file-structured read). For example:
If went is a multiple of 256 and less than
that number of words remain in the file, n is
shortened to the number of words that remain
in the file; for example if went is 512 and
only 256 words remain, i = 256.
If went is not a multiple of 256 and more
than wcnt words remain in the file, n is
rounded up to the next block; for example,
if went is 312 and more than 312 words
remain, i = 512, but only 312 are read.
If went is not a multiple of 256 and less
than wcnt words remain in the file, n equals
a multiple of 256 that is the actual number
of words being read.
= -] Attempt to read past end-of-file; no words remain
in the file.
= -2 Hardware error occurred on channel.
= -3 Specified channel is not open.
Example:

INTEGERX2 BUFFER(256)yRCODEsRLK

.

*

RCODE = IREAIN(256sRUFFERyBLK)yICHAN)
IF(RCODE+1) 101051000510

c IF NO ERRORs START HERE

10 .

.

IF(IWAITC(ICHAN) .NE.O) GOTO 1010

*

.

1000 CONTINUE
C END OF FILE FROCESSING

.

*

CALL EXIT !NORMAL END OF FROGRAM
1010 STOP ‘FATAL READ’
END

IREADC

The IREADC function transfers a specified number of words from the
indicated channel into memory. Control returns to the user program
immediately after the IREADC function is initiated. When the
operation is complete, the specified assembly language routine (crtn)
is entered as an asynchronous completion routine.

Form: i = IREADC (went,buff,blk,chan,crtn)

SYSTEM SUBROUTINE LIBRARY

where: went is the integer number of words to be
transferred.

buff is the array to be used as the buffer. This
array must contain at least wcnt words.

blk is the integer block number of the file to be
read. The user program normally updates blk
before it is used again.

chan is the integer specification for the RT-11
channel to be used.

crtn is the assembly language routine to be
activated when the transfer is complete.
This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues
the IREADC call.

Errors:

See Errors under IREAD.

Example:
INTEGER%2 IRUF(256)yRCODE, IRLK
EXTERNAL RICMF
RCODE=IREANC(256» IRUF » IRLKy ICHAN» RDCMF')
IREADF

The IREADF function transfers a specified number of words from the
indicated channel into memory. Control returns to the user program
immediately after the IREADF function is initiated. When the
operation is complete, the specified FORTRAN subprogram (crtn) is
entered as an asynchronous completion routine (see Section 4.2.1).

Form: i = IREADF (wcnt,buff,blk,chan,area,crtn)

where: wcnt is the integer number of words to be
transferred.
buff is the array to be used as the buffer. This

array must contain at least wcnt words.

blk is the integer block number of the file to be
used. The user program normally updates blk
before it is used again.

chan is the integer specification for the RT-11
channel to be used.

area is a four-word area to be set aside for 1link
information; this area must not be modified
by the FORTRAN program or swapped over by the
USR. This area can be reclaimed by other
FORTRAN completion functions when crtn has
been activated.

Errors:

SYSTEM SUBROUTINE LIBRARY

crtn is the FORTRAN routine to be
completion of the transfer.

subroutine has two arguments:

SUBROUTINE crtn (iargl,iarg2)

iargl is the channel status
Section 2.4.34) for the operation
just completed. If bit 0 is set, a
hardware error occurred during the

transfer.
iarg2 is the octal channel

for the operation just completed.

See Errors under IREAD.

Example:

[I8]

100

INTEGERX2 DERLK(4)sRUFFER(256)» BLKNO
DATA "IRLK/3ROX0» 3RINFy3RUT » 3RDAT/ » BLKNO/0O/
EXTERNAL RCMFLT

.

ICHAN=TIGETC ()

IF(ICHAN.LT.0) STOF ‘NO CHANNEL AVAILAERLE’
IF(IFETCH(DBLK) «NE.O) STOF ‘BAD FETCH’

IF (LOOKUF (ICHANyDRLK) .L.T.0) STOF ‘RAD LOOKUF’

.

IF CIREADF (256 » BUFFER » BLKNO» ICHANy DRLK» RCMFLT) .LT.0) GOTO 100

FERFORM OVERLAF FROCESSING

.

.

SYNCHRONIZER

CALL TWAIT(ICHAN) !'WAIT FOR COMFLETION ROUTINE TO RUN
RLKNO=RLKNO+1 'UFDATE ELOCK NUMEER

GOTO 20

.

.

END OF FILE FROCESSING
CALL CLOSEC(ICHAN)
CAlLL TFREEC(ICHAN)

.

cAl.l. EXIT

END

SUBROUTINE RCMFLTC(I»J)

THIS (S THE COMPLETION ROUTINE

.

RETURN
ENI

activated on
This name must
be specified in an EXTERNAL statement in
routine that issues the IREADF call.

SYSTEM SUBROUTINE LIBRARY

IREADW

The IREADW function transfers a specified number of words from the
indicated channel into memory. Control returns to the user program
when the transfer is complete or when an error is detected.

Form: i = IREADW (wcnt,buff,blk,chan)

where: wcnt is the integer number of words to be
transferred.

buff is the array to be used as the buffer. This
array must contain at least wcnt words.

blk is the integer block number of the file to be
read. The user program normally updates blk
before it is used again.

chan is the integer specification for the RT-11
channel to be used.

Errors:

See Errors under IREAD.

Example:

INTEGERX2 TRUF(1024)
ICODE=IREADU(1024¢IBUF,IBLKyICHAN)
IF(ICODE.EQ.-1) GOTO 100 'END' OF FILE FROCESSING AT 100
IF(ICODE.LT.~1) GOTO 200 '"ERROR FROCESSING AT 200

>

c MODIIFY ERLOCKS

c

Cc

[» WRITE THEM OUT

Cc
ICODE=IWRITW(1024y IRUF » IBLK » ICHAN)

IRENAM

4.3.41 1IRENAM

The IRENAM function causes an immediate change of the name of a
specified file. An error occurs if the channel specified is already
open.

Form: i = IRENAM (chan,dblk)

where: chan is the integer specification for the RT-11
channel to be used for the operation.

4-60

SYSTEM SUBROUTINE LIBRARY

dblk is the eight-word area specifying the name of
the existing file and the new name to be
assigned. If considered as an eight-element
INTEGER*2 array, dblk has the form:

dblk (1) -dblk (4) specify the Radix-50 file
descriptor for the old
file name.

dblk (5)~dblk (8) specify the Radix-50 file
descriptor for the new
file name.

NOTE

The arguments of IRENAM must be
positioned so that the USR does not
swap over them.

If a file already exists with the same name as the new file on the
indicated device, it is deleted. The specified channel is left closed
when the IRENAM is complete. IRENAM requires that the handler to be
used be resident at the time the IRENAM is issued. 1If it is not, a
monitor error occurs. The device names specified in the file
descriptors must be the same.

For more information on renaming files, see the assembly language
.RENAME request, Section 2.4.

Errors:
Normal return.

= 0
=] Specified channel is already open.
= 2 Specified file was not found. Example:

i

REALX8 NAME(2)
DATA NAME/12RDKOFTN2 DAT»12ROKOFTN2 OLD/

.

.

ICHAN=IGETC()

IFC(ICHAN.LT.0) STOF ‘NO CHANNEL’

CALL IRENAM(ICHANyNAME) 'FPRESERVE OLD DATA FILE
CALL IFREECC(ICHAN)

IREOPN

4.3.42 IREOPN

The IREOPN function reassociates a specified channel with a file on
which an ISAVES was performed. The ISAVES/IREOPN combination is
useful when a large number of files must be operated on at one time.
Necessary files can be opened with LOOKUP and their status preserved
with ISAVES. When data is required from a file, an IREOPN enables the
program to read from the file. The IREOPN need not be done on the
same channel as the original LOOKUP and ISAVES.

Form: i = IREOPN (chan,cblk)

4-61

SYSTEM SUBROUTINE LIBRARY

where: chan is the integer specification for the RT-11
channel to be associated with the reopened
file. This channel must be initially
inactive.

cblk is the five-word block where the channel
status information was stored by a previous
ISAVES. This block, considered as a
five-element INTEGER*2 array, has the
following format:

cblk (1) Channel status word (see
Section 2.4).

cblk (2) Starting block number of the
file; zero for
non-file-structured devices.

cblk (3) Length of file (in 256-word
blocks) .

cblk (4) (Reserved for future use.)

cblk (5) Two information bytes. Even

byte: I/O count of the number
of requests made on this
channel. 0dd byte: unit
number of the device associated
with the channel.

Errors:
i=20 Normal return.
=1 Specified channel is already in use.

Example:

INTEGERX2 SAVES(5,10)

DATA ISVUPTR/1/

CALL ISAVES(ICHANySAVES(1yISVUFTR))

CALL TREOFN(ICHANsSAVES(1,ISVUFPTR))

ISAVES

4.3.43 ISAVES

The ISAVES function stores five words of channel status information
into a user-specified array. These words contain all the information
that RT-1l requires to completely define a file. When an ISAVES is
finished, the data words are placed 1in memory and the specified
channel is closed and is again available for use. When the saved
channel data 1is required, the IREOPN function (Section 4.3.42) is
used.

ISAVES can be used only if a file was opened with a LOOKUP call (see
Section 4.3.70). If IENTER was used, ISAVES is illegal and returns an
error. Note that ISAVES is not legal on magtape or cassette files.

Form: 1 = ISAVES (chan,cblk)

4-62

SYSTEM SUBROUTINE LIBRARY

where: chan is the integer specification for the RT-11

channel whose status is to be saved.

cblk is a five-word block into which the channel
status information describing the open file
is stored. See Section 4.3.42 for the format
of this block.

The ISAVES/IREOPN combination is very useful, but care must be
exercised when using it. 1In particular, the following cases should be

avoided.

l.

Errors:

i

Example:

4.3.44

If an ISAVES is performed on a file and the same file is then
deleted before it is reopened, the space occupied by the file
becomes available as an empty space which could then be used
by the IENTER function. If this sequence occurs, the
contents of the file whose status was supposedly saved
changes.

Although the handler for the required peripheral need not be
in memory for execution of an IREOPN, a fatal error is

generated if the handler is not in memory when an IREAD or
IWRITE is executed.

Normal return.

The specified channel is not currently associated
with any file.

The file was opened with an IENTER call; an
ISAVES is illegal.

N O

INTEGER%2 BRLK(S5)

*

.

IF(ISAVES(ICHANYBLK) «NE.O) STOF ’'ISAVES ERROR’

ISCHED

ISCHED

The ISCHED function schedules a specified FORTRAN subroutine to be run
as an asynchronous completion routine at a specified time of day.
Support for ISCHED in SJ also requires timer support.

Form: i = ISCHED (hrs,min,sec,tick,area,id,crtn)
where: hrs is the integer number of hours.
min is the integer number of minutes.
sec is the integer number of seconds.
tick is the integer number of ticks (1/60 of a

second on 60-cycle clocks; 1/50 of a second
on 50-cycle clocks).

Notes:

1.

4.

Errors:

i

Example:

aooon

SYSTEM SUBROUTINE LIBRARY

area is a four-word area that must be provided for
link information; this area must never be
modified by the FORTRAN program, and the USR
must not swap over it, This area can be
reclaimed by other FORTRAN completion
functions when crtn has been activated.

id is the identification integer to be passed to
the routine being scheduled.

crtn is the name of the FORTRAN subroutine to - be
entered at the time of day specified. This
name must be specified 1in an EXTERNAL
statement in the FORTRAN routine that issues
the ISCHED call. The subroutine has one
argument. For example:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the
integer argument 1is the value specified for
id in the appropriate ISCHED call.

The scheduling request made by this function can be cancelled
at a later time by an ICMKT function call.

If the system is busy, the actual time of day that the
completion routine 1is run can be greater than the requested
time of aay.

A FORTRAN subroutine can periodically reschedule itself by
issuing its own ISCHED or ITIMER calls from within the
routine.

ISCHED requires a queue element; this should be considered
when the IQSET function (Section 4.3.33) is executed.

0 Normal return.
1 No queue elements available; unable to schedule
request.

INTEGERX2 L INK(4) 'LINKAGE AREA

EXTERNAL NOON INAME OF ROUTINE TO RUN
I=ISCHED(12,05y050sLINKyOyNOON) 'RUN SURR NOON AT 12 FPM

. (rest of main rrodgram)

END

SURROUTINE NOONCIDD

THIS ROUTINE WILL TERMINATE EXECUTION AT LUNCHTIME,
IF THE JOR HAS NOT COMFLETED RY THAT TIME.

STOF ‘ARORT JOER -- LUNCHTIME~’
END

SYSTEM SUBROUTINE LIBRARY

ISDAT/ISDATC/ISDATF/ISDATW

4.3.45 ISDAT/ISDATC/ISDATF/ISDATW (FB and XM Only)

These functions are used with the IRCVD/IRCVDC/IRCVDF, and IRCVDW
calls to allow message transfers under the FB or monitor. Note that
the buffer containing the message should not be modified or reused
until the message has been received by the other job. These functions
require a queue element; this should be considered when the IQSET
function (see Section 4.3.37) is executed.

ISDAT

The ISDAT function transfers a specified number of words from one job
to the other. Control returns to the user program immediately after
the transfer is queued. This call is used with the MWAIT routine (see
Section 4.3.80).

Form: 1 = ISDAT (buff,wcnt)

where: but f is the array containing the data to be
transferred.
wcnt is the integer number of data words to be
transferred.
Errors:
i=0 Normal return.
=1 No other job currently exists in the system.
Example:

INTEGERX2 MSG(40)

.

.

CALL ISDAT(MSG»40)

.

CALL MWAIT
C FUT NEW MESSAGE IN RUFFER

ISDATC

The ISDATC function transfers a specified number of words from one job
to another. Control returns to the user program immediately after the
transfer is queued. When the other job accepts the message through a
receive data request, the specified assembly language routine (crtn)
is activated as an asynchronous completion routine.

Form: i = ISDATC (buff,wcnt,crtn)

where: buff is the array containing the data to be
transferred.

SYSTEM SUBROUTINE LIBRARY

wcnt is the integer number of data words to be
transferred.
crtn is the name of an assembly language routine

to be activated on completion of the
transfer. This name must be specified in an
EXTERNAL statement in the FORTRAN routine
that issues the ISDATC call.

Errors:
i=0 Normal return.
=] No other job currently exists in the system.

Example:

INTEGERX2 MSG(40)

EXTERNAL RTN

CALL ISDATC(MSG»40yRTN)
ISDATF

The ISDATF function transfers a specified number of words from one job
to the other. Control returns to the user program immediately after
the transfer is queued and execution continues. When the other job
accepts the message through a receive data request, the specified
FORTRAN subprogram (crtn) is activated as an asynchronous completion
routine (see Section 4.2.1).

Form: i = ISDATF (buff,wcnt,area,crtn)

where: buff is the array containing the data to be
transferred.

wcnt is the integer number of data words to be
transferred.

area is a four-word area to be set aside for 1link

information; this area must not be modified
by the FORTRAN program and the USR must not
swap over it. This area can be reclaimed by
other FORTRAN completion functions when crtn
has been activated.

crtn is the name of a FORTRAN routine to be
activated on completion of the transfer.
This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues
the ISDATF call.

Errors:
i=90 Normal return.
=] No other job currently exists in the system.
Example:

INTEGERX2 MSG(40),SPOT(4)
EXTERNAL RTN

*

CALL ISDATF(MSGy40sSPOTsRTN)
4-66

SYSTEM SUBROUTINE LIBRARY

ISDATW

The ISDATW function transfers a specified number of words from one job
to the other. Control returns to the user program when the other job
has accepted the data through a receive data request.

Form: 1 = ISDATW (buff,wcnt)

where: buff is the array containing the data to be
transferred.
wcnt is the integer number of data words to be
transferred.
Errors:
i=0 Normal return.
=1 No other job currently exists in the system.
Example:

INTEGERX2 MSG(40)

.

.

IF (ISDATW(MSG»40).NE.O) STOF ‘FOREGROUND JOR NOT RUNNING-

ISLEEP

4.3.46 ISLEEP

The ISLEEP function suspends the main program execution of a job for a
specified amount of time. The specified time is the sum of hours,
minutes, seconds, and ticks specified in the ISLEEP call. All

completion routines continue to execute. Support for ISLEEP in SJ
also requires timer support.

Form: i = ISLEEP (hrs,min,sec,tick)

where: hrs is the integer number of hours.
min is the integer number of minutes.
sec is the integer number of seconds.
tick is the integer number of ticks (1/60 of a

second on 60-cycle clocks; 1/50 of a second
on 50-cycle clocks).

1. ISLEEP requires a queue element; this should be considered
when the IQSET function (Section 4.3.37) is executed.

2. 1If the system is busy, the time that execution 1is suspended
may be greater than that specified.

Errors:

i Normal return.

No gqueue element available.

Ll =]

4-67

SYSTEM SUBROUTINE LIBRARY

Example:

.

*

CALL IQSET(2)

*

*

CALL ISLEEF(0y05054) 'SIVE RACKGROUND JOE SOME TIME

ISPFN/ISPFNC/ISPFNF /ISPFNW

4.3.47 ISPFN/ISPFNC/1SPFNF/ISPFNW

These functions are used in conjunction with special functions to
various handlers. They provide a means of doing device-dependent
functions, such as rewind and backspace, to those devices. If ISPFN
function calls are made to any other devices, the function call is
ignored. For more information on programming for specific devices,
see Section 1.4.7.

To use these functions, the handler must be in memory and a channel
associated with a file via a non-file-structured LOOKUP call. These
functions require a queue element; this should be considered when the
IQSET function (Section 4.3.37) is executed.

ISPFN

The ISPFN function queues the specified operation and immediately
returns control to the user program. The IWAIT function can be used
to ensure completion of the operation.

Form: i = ISPFN (code,chan(,wcnt,buff,blk])

where: code is the integer numeric code of the function
to be performed (see Table 4-2).

chan is the integer specification for the RT-11
channel to be used for the operation.

wcnt is the integer number of data words in the
operation.* Default value is 0. 1In magtape
operations, it specifies the number of
recprds to space forward or backward. For a
backspace operation (wcnt=0), the tape drive
backspaces to a tape mark or to the
beginning-of-tape. For a forward space
operation (wcnt=0), the tape drive forward
spaces to a tape mark or the end-of-tape.

buff is the array to be used as the data buffer.*
Default value is 0.

blk is the integer block number of the file to be
operated upon.* Default value is 0.

* These parameters are optional with some ISPFUN calls, depending on
the particular function.

4-68

INTEGERX2

*
*

*

ERRADR =

SYSTEM SUBROUTINE LIBRARY

When this argument is supplied by magtape, it
is the address of a four-word error and
status block used for returning the exception
conditions. The four words must be
initialized to zero.

The error and status block must always be
mapped when running in the XM monitor, and
the USR must not swap over it. To obtain the
address of the error block execute the
following instructions:

ERRADR» ERRBLK(4)
DATA ERRBLK /7090+0y0y/

IADDR (ERRELK) !'GET THE ADDRESS OF THE 4-WORD ERROR ELOCK
ICODE = ISPFN (CODE»ICHANsWDCTyRBUF yERRADR)

Table 4-2
Special Function Codes (Octal)
Function MT,MM | CT DX DM DY DL
Read absolute 377 377 377 377
Write absolute 376 376 376 376
Write absolute with
deleted data 375 375
Forward to last file 377
Forward to last block 376
Forward to next file 375
Forward to next block 374
Rewind to load point 373 373
Write file gap 372
Write end-of-file 377
Forward 1 record 376
Backspace 1 record 375
Initialize the bad
block replacement 374 374
table
Write with extended
record gap 374
Offline 372
Return volume size 373 373 373
Errors:
i=0 Normal return,
=1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
= 3 Channel specified is not open.
Example:

CALL ISFFN(*373yICHAN) 'REWIND

SYSTEM SUBROUTINE LIBRARY

ISPFNC

The ISPFNC function queues the specified operation and immediately
returns control to the user program. When the operation is complete,
the specified assembly language routine (crtn) 1is entered as an
asynchronous completion routine.

Form: i = ISPFNC (code,chan,went,buff,blk,crtn)

where: code is the integer numeric code of the function

to be performed (see Table 4-2) .,

chan is the integer specification for the RT-11
channel to be used for the operation.

went is the integer number of data words in the
operation. This argument must be 0 if not
required.

buff is the array to be used as the data buffer.

This argument must be 0 if not required.

blk is the integer block number of the file to be
operated upon. This argument must be 0 if
not required.

When this argument is supplied by magtape, it
is the address of a four-word error and
status block used for returning the exception
conditions. The four words must be
initialized to 0.

The error and status block must always be
mapped when running in the XM monitor, and
the USR must not swap over it. To obtain the
address of the error block execute the
following instructions:

INTEGERX2 ERRADIRy ERRRLK(4)
IATA ERRRBLK /0y0y0y0y/

.

ERRADR = IADDR (ERRELK) !GET THE ADDRESS OF THE 4-WORD' ERROR RLOCK
ICODE = ISFFN (CODEy ICHAN»WICT s RUF s ERRADR)

crtn is the name of an assembly language routine
to be activated on completion of the
operation. This name must be specified in an
EXTERNAL statement in the FORTRAN routine
that issues the ISPFNC call.

Errors:

Normal return.

Attempt to read or write past end-of-file.
Hardware error occurred on channel.
Channel specified is not open.

i

wononn
wN =

SYSTEM SUBROUTINE LIBRARY

ISPFNF

The ISPFNF function gqueues the specified operation and immediately
returns control to the user program. When the operation is complete,
the specified FORTRAN subprogram (crtn) is entered as an asynchronous
completion routine.

Form: 1 = ISPFNF (code,chan,wcnt,buff,blk,area,crtn)

where: code is the integer numeric code of the function
to be performed (see Table 4-2).

chan is the integer specification for the RT-11
channel to be used for the operation.

wcnt is the integer number of data words 1in the
operation. This argument must be 0 if not
required.

buff is the array to be used as the data buffer.

This argument must be 0 if not required.

blk is the integer block number of the file to be
operated upon. This argument must be 0 if
not required.

When this argument is supplied by magtape, it
is the address of a four-word error and
status block used for returning the exception
conditions. The four words must be
initialized to 0.

The error and status block must always be
mapped when running in the XM monitor, and
the USR must not swap over it. To obtain the
address of the error block execute the
following instructions:

INTEGERX2 ERRADR, ERRELK(4)
DATA ERRELK /09050909 /

.

ERRADR = IADDR (ERRELK) !'GET THE ADDRESS OF THE 4-WORD ERROR BLOCK
ICODE = ISFFN (CODEy»ICHANsWDOCTyRBUFyERRAIR)

area is a four-word area to be set aside for
linkage information; this area must not be
modified by the FORTRAN program and the USR
must not swap over it. This area can be
reclaimed by other FORTRAN completion
functions when crtn has been activated.

crtn is the name of a FORTRAN routine to be
activated on completion of the operation.
This name must be specified in an EXTERNAL
statement in the FORTRAN routine that issues
the ISPFNF call. The subroutine has two
arguments:

SUBROUTINE crtn (iargl,iarg2)

SYSTEM SUBROUTINE LIBRARY

iargl is the channel status word (see
Section 2.4) for the operation just
completed. If bit 0 1is set, a
hardware error occurred during the

transfer.
iarg2 is the channel number used for the
operation just completed.
Errors:
i=0 Normal return.
=1 Attempt to read or write past end-of-file.
= 2 Hardware error occurred on channel.
=3 Channel specified is not open.
Example:
REALX4 MTNAME(2)yAREA(2)
DATA MTNAME/3RMT0,0./
EXTERNAL DONSUE
I=IGETC() 'ALLOCATE CHANNEL
CALL IFETCH(MTNAME) 'FETCH MT HANIDLER
CALL LOOKUF (IyMTNAME) 'NON-FILE-STRUCTURED LOOKUF ON MTO
IERR=ISFFNF("373,I505050yAREA» IONSUR) 'REWIND MAGTAFE
END
SURROUTINE DONSUR
Cc
Cc RUNS WHEN MTO HAS REEN REWOUND
c
END
ISPFNW

The ISPFNW function queues the specified operation and returns control

to the user program when

the operation is complete.

Form: i = ISPFNW (code,chan|[,wcnt,buff,blk])

where: code

chan

wcnt

buff
blk

is the integer numeric code of the function
to be performed (see Table 4-2).

is the integer specification for the RT-11
channel to be used for the operation.

is the integer number of data words in the
operation.*

is the array to be used as the data buffer.*

is the integer block number of the file to be
operated upon.*

* These parameters are optional with some ISPFUN calls, depending on

the particular function.

4-72

SYSTEM SUBROUTINE LIBRARY

When this argument is supplied by magtape, it
is the address of a four-word error and
status block used for returning the exception
conditions. The four words must be
initialized to 0.

The error and status block must always be
mapped when running in the XM monitor, and
the USR must not swap over it. To obtain the
address of the error block execute the
following instructions:

INTEGERX2 ERRADR» ERRELK(4)
DATA ERRBLK /0909050y /

*

ERRADR = IADDR (ERRBLK) !GET THE ADDRESS OF THE 4-WORD ERROR RLOCK
ICODE = ISPFN (CODE»ICHAN>WDCT»RUFsERRADIR)

Errors:
i Normal return.
Attempt to read or write past end-of-file.

Hardware error occurred on channel.
Channel specified is not open.

WO

Example:

INTEGER%2 BUF (65)» TRACKySECTORyDELK(4)
DATA DRLK/3RDX0»0,050/

.

ICHAN=IGETC ()
IF(ICHAN.LT.0) STOF ‘NO CHANNEL AVAILARLE~
IF (LOOKUF (ICHAN»DEBLK) .LT.0) STOF ‘RADLI LOOKUF~

*

READ AN ABSOLUTE TRACK AND SECTOR FROM THE FLOFFY
ICODE:=ISFFNW("377y ICHANy TRACKy RUF»SECTOR)

RUF (1) IS THE DELETED DATA FLAG
BUF (2--65) IS THE DATA

o0 00

ISPY

4.3.48 1SPY

The ISPY function returns the integer value of the word at a specified
offset from the RT-1l1 resident monitor. This subroutine uses the
.GVAL programmed request to return fixed monitor offsets. (See
Section 2.2.6 for information on fixed offset references.)

Form: i = ISPY (ioff)

where: ioff is the offset (from the base of RMON) to be
examined.

4-73

Function Result:

SYSTEM SUBROUTINE LIBRARY

The function result (i) is set to the value of the word examined.

Example:

QS0

ERANCH TO 200 IF RUNNING UNDER FE MONITOR

IF(ISFY(*"300).AND.1) GOTO 200

OO0

ITIMER

4.3.49 ITIMER

WORDN AT OCTAL 300 FROM RMON IS
THE CONFIGURATION WORD,

The ITIMER function schedules a specified FORTRAN subroutine to be run

as an asynchronous com

Pletion routine after a specified time interval

has elapsed. This request is supported by SJ when the timer support
option is included during system generation.

Form: i = ITIMER (hrs,min,sec,tick,area,id,crtn)

where: hrs
min
sec

tick

area

id

crtn

is the integer number of hours.
is the integer number of minutes
is the integer number of seconds.

is the integer number of ticks (1/60 of a
second on 60-cycle clocks; 1/50 of a second
on 50-cycle clocks).

is a four-word area that must be provided for
link information; this area must never be
modified by the FORTRAN program, and the USR
must never swap over it. This area can be
reclaimed by other FORTRAN completion
functions when crtn has been activated.

is the identification integer to be passed to
the routine being scheduled.

is the name of the FORTRAN subroutine to be
entered when the specified time interval
elapses. This name must be specified in an
EXTERNAL statement in the FORTRAN routine
that references ITIMER. The subroutine has
one argument. For example:

SUBROUTINE crtn(id)
INTEGER id

When the routine is entered, the value of the
integer argument 1is the value specified for
id in the appropriate ITIMER call.

