PROGRAMMED REQUESTS

Example:

STITLE Twall mac
P.,TWATIY CAN BE USED IN APPLICATIONS WHERE Ao PROGRAM MUST SE ONLY
JACTIVATED PERIODICALLY. THMIS ExaMPLE wILL 'waKE UP' EVERY TEN SECONDS
JT0 PEMPORM 4 TASK, AND THEN SLEEP AGAIN, FOR EXAMPLE PURPOSES ONLY &
JCOUNTY OF TEN CYCLES IS MAXIMUM,

oMCALL L TWAIT, QSET, EXIT, PRINTY

GOt QSET SQAREA, 87 JSET UP 7 EXTRA ELEMENTS
cLe Count yMdx COUNT

STARTy; MOV SEMT| ST,Rp)SET R@ TO TWE ARG, BLOCK
oTWALY 1GO Y0 SLEEP FOR 1@ SECONDS
8Cs NOQ INO QUEUE ELEMENT?
Jse PCoTASK 100 SOMETHING MERE
INC COUNT JBUMP COUNTER
Cve 81¢,9COUNT JAYT Max 7
(14 STARTY INO=GO AGAIN
JEXITY (13381

QAREA; ,BLxw 7e7 1SPACE FOR 7 ELEMENTS

EMTL STy ,BYTE n,2e
oWORD TIme

TIMET o wORD 9Y,10,¢60, 110 SECOND INTERVALS
TASK JSOME GENERALIZED USER
IMERE,

INC MPTR

.} &4 8liMPTR

L] 4] 13

+PRINT 8amsi

RS »C
188 sPRINT 8MSGy

RYS PC

COUNTy +wORD e
MPTR eWORD P
“8G1 oASCIZ /TICK/
“sG!y «ASCIZ /vocw/
<EVEN
NOOI JEYITY
+END (44

WAIT

2.4.61 .WAIT

The .WAIT request suspends program execution until all input/output
requests on the specified channel are completed. The .WAIT request

combined with the .READ/.WRITE requests makes double-buffering a
simple process.

.WAIT also conveys information back through 1its error returns. An
error is returned if either the channel is not currently open or if
the last I/0 operation resulted in a hardware error.

In an FB system, executing a .WAIT when I/O is pending causes that job
to be suspended and the other job to run, if possible.

Macro Call: .WAIT chan

Request Format:

2-133

PROGRAMMED REQUESTS

Errors:
Code Explanation
0 Channel specified is not open.
1 Hardware error occurred on the previous 1I/0 operation
on this channel.
Example:

For an example of .WAIT used for I/0 synchronization, see the examples
for the .WRITE/.WRITC/.WRITW requests.

o+TITLE warT, mMaC

JAN EXAMPLE OF THE USE OF .wAIT FOR ERROR DETECTION IS ITs ude IN
JCONJUNCTION wITW JCSIGEN TO DETERMINE wICw FILE FIELDS N THE COMMAND
JSTRING MAVE BEEN SPECIFIED: FOR EXAMPLE, 4 PROGRAM suCH

JAS MACRO MIGMT USE THE FOLLOWING CODE TO DETERMINE IF 4 LISTING

IFILE 18 DESIRED,

eMCALL o WAIT, CSIGEN,, EXIT

$TanT,
+CSIGEN sDSPACE,#DEXT,8p JPROCESS COMMAND STRING
SAIT k0 JCHECK FOR FILE TN SIROT prgLp
acs NORINARY INO BINARY DESIRED

NOBINARY,
LTS G B 3 JCMECX FOR LISTING SPECIFICATION
8CS NOLISTING INO LISTING DESI®ED

NOLISTING:
JHAIT 8} JICHECK FOR INPUT FILE OPEN
8Cs ERROR INO INPYUY FILE

ERRORy LEYIT

DEXTy ,RADS® /MAC/
«RADS® /0omy/
Q082 /L81/
JWORD @

DS'AC!-.
+END STARY

.WRITE/.WRITC/.WRITW
2.4.62 .WRITE/.WRITC/.WRITW

Note that in the case of .WRITE and .WRITC, additional queue elements

should be allocated for buffered I/O operations (see .QSET).

-WRITE

from memory
user program

The .WRITE request transfers a specified number of words
to the specified channel. Control returns to the
immediately after the request is queued.

2-134

PROGRAMMED REQUESTS

Macro Call: .WRITE area,chan,buf,wcnt,blk

where: area is the address of a five-word EMT argument

block.

chan is a channel number in the range 0-377
(octal).

buf is the address of the memory buffer to be
used for output.

wcnt is the number of words to be written.

blk is the block number to be written. For a

file-structured .LOOKUP or .ENTER, the block
number is relative to the start of the file.
For a non-file-structured .LOOKUP or .ENTER,
the block number is the absolute block number
on the device. The user program should
normally update blk before it is used again.
See Chapter 1 for the significance of the
block number for line printers, paper tape
readers, etc.

Request Format:

RO + area: 1m —CFQE:
blk
buf

Notes:

See the note following .WRITW.

Errors:
Code Explanation
0 Attempted to write past end-of-file.
1 Hardware error.
2 Channel was not opened.
Example:

Refer to the examples following .WRITW.

-WRITC

The .WRITC request transfers a specified number of words from memory
to a specified channel. Control returns to the wuser program
immediately after the request 1is queued. Execution of the user
program continues until the .WRITC is complete, then control passes to
the routine specified in the request. When an RTS PC is encountered
in the completion routine, control returns to the user program.

Macro Call: .WRITC area,chan,buf,wcnt,crtn,blk

where: area is the address of a five-word EMT argument
block.

2-135

PROGRAMMED REQUESTS

chan is a channel number in the range 0 to 377
(octal).

buf is the address of the memory buffer to be
used for output.

wcnt is the number of words to be written.

crtn is the address of the completion routine to

be entered (see Section 2.2.8).

blk is the block number to be written. For a
file-structured .LOOKUP or .ENTER, the block
number is relative to the start of the file.
For a non-file-structured .LOOKUP or .ENTER,
the block number is the absolute block number
on the device. The wuser program should
normally update blk before it is used again.
See Chapter 1 for the significance of the
block number for line printers, paper tape
readers, etc.

Request Format:

RC-+area: [11 [chan
bik
buf
went
crtn
Notes:

See the note following .WRITW.
When entering a .WRITC completion routine the following are true:

1. RO contains the contents of the channel status word for
the operation. If bit 0 of RO is set, a hardware error
occurred during the transfer. The data can be
unreliable.

2. Rl contains the octal channel number of the operation.
This is useful when the same completion routine is to be
used for several different transfers.

3. Registers RO and Rl are available for use by the routine,
but all other registers must be saved and restored. Data
cannot be passed between the main program and completion
routines in any register or on the stack.

Errors:
Code Explanation
0 End-of-file on output. Tried to write outside 1limits
of file.
1 Hardware error occurred.
2 Specified channel is not open.
Example:

Refer to the examples following .WRITW.

2-136

«WRITW

PROGRAMMED REQUESTS

The .WRITW request transfers a specified number of words from memory

to the specified
the .WRITW is complete.

Macro Call:

where:

channel. Control returns to the user program when

.WRITW area,chan,buf,wcnt,blk

area

chan

buf

wcnt

blk

Request Format:

RO + area:

is the address of a five-word EMT argument
block.

is a channel number in the range 0-377
(octal).

is the address of the buffer to be used for
output.

is the number of words to be written. The
number must be positive.

is the block number to be written. For a
file-structured .LOOKUP or .ENTER, the block
number is relative to the start of the file.
For a non-file-structured .LOOKUP or .ENTER,
the block number is the absolute block number
on the device. The user program should
normally update blk before it is used again.
See Chapter 1 for the significance of the
block number for line printers, paper tape
readers, etc.

NOTE

Upon return from any .WRITE, .WRITC or
.WRITW programmed request, RO contains
the number of words requested if the

write

to a sequential-access device

(for example, magtape). If the write is

to a

words

random-access device (disk or
DECtape) ,
that will be written (.WRITE or

RO contains the number of

.WRITC) or have been written (.WRITW).

If a

request is made to write past the

end-of-file on a random-access device,
the word count is shortened and an error
is returned. The shortened word count
is returned in RO. Note that the write
is done and a completion routine, if
specified, is entered, unless the

request

cannot be partially filled

(shortened word count = 0).

2-137

PROGRAMMED REQUESTS

Errors:
Code Explanation
0 Attempted to write past EOF.
1 Hardware error.
2 Channel was not opened.

Examples:

Each of the following examples is a simple program to duplicate a

paper tape. They illustrate RT-11's three types of .READ/.WRITE
requests.

In the first example, .READW and .WRITW are used. The 1I/0 is
completely synchronous, with each request retaining control until the
buffer is filled (or emptied).

«TLITLE KEADW,MAC
«MCALL . FETCH, .READW, .wRITW
«MCALL «ENTER, .LUOKUP, .PRINT, .EXIT, .CLOSE, . wAIT

ERKRBYT=52
START: .FETCH #nSPACE,#1TNAME ;GET TT HANDLER
BCS FERR iTT NOT AVAILABLE
MoV RO,R2 7RV HAS NEXT FREL LUCATION
«FETCH R2,#PCNAME $GET PC HANDLER
BCS FERK SNOT AVAILABLE
MOV SAREA,R> JEMT ARGUMENT AREA
CLr R4 R4 15 OUTPUT CHANNEL; O
nov #1,R3 7R3 IS INPUT CHANNEL ;1
+ENTER RS5,R4,8PCNAME JENTER THE FILE
BCS ENERR 3SOME ERROR IN ENTEK
«LOOKUP RS,K3, sTINAME 7LOOKUP FlLk ON CHANNEL 1
BCS LKERR JERROR IN LOOKUP
CLR R1 7USE R1 AS BLOCK NUMBER
Loor: +READW K5,K3,8BUFF,#256,.,R1 ;READ ONE BLOCK
BCS RDEKK
+WRITW RY,K4,#BUFF,#250.,R1 JWRITE THAT BLOCK
BCS W1IERR
INC R1 JBUMP BLOCK. NOTE: THIS IS

INOT NECESSARY FOR NUN-FILE
JDEVICES IN GENERAL. IT 1S
$USED HERE AS AN EXAMPLE OF
A GENERAL TECHMIQUE.

BR LOUP JKEEP GOING
RUERR: TSTo @SERRBYT JERROR. 1S IT EOF?
bEQ 16 JYES
«PRINT SRDMSG $NO, HARD READ ERROK
oeXIT
18: +CLUSE R3 3CLOSE INPUT AND OQUTPUT
.CLUSE R4
X1l 3AND EXIT.
WTERKRS PRINL swIMSG
JEXIT
TINAME: RADSO /1 / INUTE THAT 1T NEEDS NU FILE NAME
« WUKD Q0 sFILE NAME NEED ONLY bBE O,
PCNAME: KADSU /PC /
e WUKRD V]
FERRS «PRINT #FMSG SERROR ACTIONS GO HERE. IT IS
XKLL JGENERALLY UNDESIRABLE 10
ENERR: PRINT #eMSG JEXECUTE A HALT OR RESET
+EALT 7 INSTRUCTION ON ERROK.
LAEKRS +PRINL BLMOG
oKLY

EMSGe «ASCIZ /NO DEVICR?Z/
EMSGe «ASCIZ /ENTRY ERROKZ/
LMSG: «ASClZ /LUOKUP ERRUR?/
RDMSG: LASCIZ /READ ERROK?/
WIMSG: ASCLZ /wWRITE ERRUR?/
+EVEN
AREAS oBLKW 10
BUFF$ oBLAW 2456,
HSPACE=,
END STAKT

2-138

PROGRAMMED REQUESTS

The same routine can be coded using .READ and .WRITE as follows. The
-WAIT request 1is used to determine if the buffer is full or empty
prior to its use.

«TITLE REAU.MAC
«MCALL .FeTCH,.READ,.sRITE
+MCALL .EMNTER, .LUOKUP, .PRINT, .EXIT, .CLOSE, +WAIT

EXRBYI=52
START: .relCH #HSPACE,81TNAME ;GET TT HANDLER
8CsS FEXR 3TT NOT AVAILABLE
MOV RU, K4 sRO HAS NEXT FREE LOCATION
+FEICH R2,8PCNAME 3GET PC HANDLER
BCS FERK SNOT AVAILABLE
MOV SAREA,RS JEMT ARGUMENT AREA
CLR RQ tR4 IS OUTPUT CHANNEL; ©
Muv $1,R3 JR3 IS INPUT CHANNEL 31
«ENIER RS,R4,3PCNAME JENTER THE FILE
BCo ENEKR 3SOME ERROR IN ENTER
«LUUKUP RYS,R3, #sTTNAME 3LOOKUP FLILE ON CHANNEL 1
BCS LKERK $ERROR IN LOOKUP
CLr R1 SUSE R1 AS BLOCK NUMBER
LooP: «KEAD RS,K3,8BUFF,#82506,,R1 3READ A BUFFER
BCS KOERR
oWALY R3 SWAIT FUR BUFFER
BCS LUERR SERROR HERE IS HARD ERROR
«WRITE H5,RQ,#BUFF,98256.,R1 JWwRITE TTHE BUFFER
BCS IOLRR 3170 ERROR
INC K1
BK Luop JKEEP GOING
RDERR: TST0 WILRRBY I SERROR. IS I1 EOQOF?
BMNE 1UEKR JNO, HARD ERRUR
+CLUSE R3 sCLUSE INPUT AND UUTPUT
«CLUSE R4
JEXLL sAND EXIT.
JUERR: PRINT 8I0MSG 3NO, HARD READ EKROR
JEXIY
TINAME: .xADSU 711 / JNOTE THAT TT NEEDS NO FILE NAME
« WUKD v sFLLE NAME NEED ONLY BE O,
PCNAME: RADSV /PC /
«WORD 0
FExRS +PRINL 8#FMSG SERROR ACTIUNS GO HERE. IT IS
XLl JGENERALLY UNDESIRABLE TO
ENEKNK: +PRINI BEMSG JEXECUTE A HALT OUR KESET
okXll 3 INSTRUCTIUN ON ERKOR.
LRERK: PRINT SLMSG
«bXIT

FMSG: «ASCLL /NU LRVICEZ/
EMOG «ASCLL /ENIKY BERROKZ/
LMSG: «ASCLlZ /LUUKUP ERROR?/
10MS36: LASCIZ "1/0 ERKRUK?2*
wiMdG: LASCIL /wRIfE ERROR?/
+JEVEN
AREA: «BLAW v
BUFF «BLAW 2456,
HSPACES=,
+eND SLAKRY

2-139

PROGRAMMED REQUESTS

-READ and .WRITE are also often used for double-buffered 1/0. The
basic double-buffering algorithm for input is:

Action Explanation

READ BUFFER 1 Fill BUFFER 1
LOOP: WAIT BUFFER 1 Wait for BUFFER 1 to fill
READ BUFFER 2 Start filling BUFFER 2
USE BUFFER 1 Process BUFFER 1 while BUFFER 2 fills
WAIT BUFFER 2 Wait for BUFFER 2 to fill
READ BUFFER 1 Start filling BUFFER 1
USE BUFFER 2 Process BUFFER 2 while BUFFER 1 fills
BR LOOP

Correspondingly, the basic double-buffering algorithm for output is:

Action Explanation

FILL BUFFER
LOOP: WRITE BUFFER
FILL BUFFER

Prepare BUFFER 1 for output
Start emptying BUFFER 1

Fill BUFFER 2 while BUFFER 1
empties

Wait for BUFFER 1 to empty
Start emptying BUFFER 2

Fill BUFFER 1 while BUFFER 2
empties

Wait for BUFFER 2 to empty

WAIT BUFFER
WRITE BUFFER
FILL BUFFER

N N N

WAIT BUFFER
BR LOOP

The following example duplicates a paper tape by using the .READC and
-WRITC requests and completion routines. After the first read, the
completion routines control the remaining I/0.

2-140

PROGRAMMED REQUESTS

+TITLE WRITCZ.MAC
+MCALL FETCH, .HEADC, .WRITC
+MCALL .ENTER,.LOOKUP,.PRINT,.EXIT, .CLOSE,.WAIT
LRRBYT=52
START: FETCH #hSPACE,#1TTNAME 3GET TT HANDLER
BCS FLNK 3TT NOT AVAILABLE
MoV RV, R2 3RO HAS NEXT FREE LOCATION
+FETCH RZ,8PCNAME $GET PC HANDLER
FLNKS 8Cs Feki 3NOT AVAILABLE
nov SAKEA,RS 3EMT ARGUMENT AREA
CLR R4 sR4 18 OUTPUT CHANNEL; O
Muv #1,Kk3 3R3 IS INPUT CHANNEL 31
+ENTER RS,R4,8PCNAME JENTER THE FILE
BCS ENERR 3SOME ERKOR IN ENTER
«LOOKUP RS,K3, $TTNAML sLOOKUP FILE ON CHANNEL 1
BCs LKERR SERROR IN LOOKUP
CLR Rl 3USE R1 AS BLOCK NUMBER
Loop: CLK OFLG $CLEAR DONE/ERROR FLAG
<READC K5,R3,8BUFF,#256,,8RDCONP,R1 JREAD ONE BLOCK
BCS eUF $NO ERROR WILL HAPPEN HERE
18: TST DFLG 3DUNE FLAG SET?
BEW 1s 3NO, WAIT FOR IT TO Bk SET.
1D LUEKRR JYES, BUT HARD ERROR OCCURRED
EOF: +CLUSE RJ3 JCLOSE INPUT AND OUTPUT CHANNELS
.CLUSE R4
<EXIT $ALL DONE
+ENABL LSB
ROCUMP: RUK RV 1 IF BIT O SET
8CS KWERR $AN ERROR OCCURRED.
<WRITC ®AREA,#0,8bUFF,8256,,0WRCOMP,BLKN JWRITE THAT BLOCK
vCC 48 $ERROR HERE IS HARDWARE
KWERKS MOV #=1,0rLG 3FLAG THE ERROR
28: RIS pC
WRCOMP: KRUR RO
BCS KWERR sHARDWARE ERROK
INC BLKN sBUMP BLOCK NUMBER,
<READC ®AKEA, 91 ,8BUFF, 8256, ,8RDCOMP,BLKN
8CC 38 }NO ERROR
TSIw eSLRRBY L $EOF?
BNE RWERR $NO, HARD ERROR
INC DFLG 7SAY WE'RE DONE
3s: R1S PC
+DSABL LS®
FERR: MOV SFMSG,RO sERROR ACTIONS GO HERE. 1T IS
BR TYPIT $GENERALLY UNDESIRABLE TO
ENERRS MOV SEMSG, RY SEXECUTE A HALT OKR RESET
BK TYPLIT s INSTRUCTION ON ERROR.
LUERK: MUV #LUMSG, RV
BR Lyrls
LKEKKS MUV #LMOG,RO
TYIPLAT: PRINT
JEXLL
oNLIST BEX
FMSGS <ASCIZ /NU LevICE?2/
EMIGe +ASCIZ /ENTRY ERKURZ/
LMSG: +ASCLlZ /LUURUP ERRUR?/
IOMSG: JASCIZ "I/U EKRKRURY"
+LIST BEX
+EVEN
DFLG: «WURY V]
TINAME: KADSV /[T / sNUTE THAT TT NEEDS NO FILE NAME
« WURD v sFILE NAME NEED ONLY BE O,
PCNAME: .KAUSO /pPC /
« WUKRD V]
BLKN: e WURD v 3sBLOCK NUMBER
AREA: «BLKw v
BUFF? «BLAW FET-
HOPACE=,
+END SLAKT

2-141

PROGRAMMED REQUESTS

The following example incorporates the -LOOKUP, .READW, and .CLOSE
requests. The program opens the file RT11.MAC on the system device,
SY:, for input on channel 0. The first block is read and the file is
then closed.

«TITLE WRTT4 MaC
oMCALL ,LCLOSE,,LOOKUP
oMCALL L PRINT, ,EXIT,, READW, ,FETCH

STaRT; MOV #L187,RS JEMT ARGUMENT LIST pOINTER
cLe R4 18LOCK NUMBER
CLR R JCHANNEL o
+FETCH SCORADD,SFPTR JFETCM DEVICE WANDLER
(144 2%
0V sFETMSG,RQ IFETCH ERROR
184 «PRINT IPRINT ERROR MESSAGE
ExIY
281 .LOOKUP RS,R3,sFpTR 1LOOKUP FILE ON CHANNEL @
8ce 3
MOV sLKMSG,RQ IPRINT PAILURE MESSAGE
8R 18
Ise JREADW RY,n3,¥8UFF,8256,,R4 IREAD ONE BLOCK
8ce 'Y
MOV SRPMSG,RD JIREAD ERROR
B8R 1s
s «CLOSE RJ ICLOSE TWE CHANNEL
JEXITY
LIST, oBLKN 5 ILIST FOR EMT CaLLs

EPTRy +RADSW /8y RTIL waC/)RADSO OF FIEL NAME,DEVICE
FETMSGy ,ASCIZ /FETCH FPAILED/)ASCIT MESSAGES
L«M8Gy ,ASCIZ /LOOKUP FAILED/
QOMSGy LASCI2Z /READ FAILED/

+EVEN
CORADD,y ,BLxw 2000 18PACE POR _ARGEST WANDLERS
8UFFs,

«END STARY

2.5 CONVERTING VERSION 1 MACRO CALLS TO VERSION 3
As mentioned in the introduction of this chapter, RT-11 Version 3 and
later releases support a slightly modified format for system macro

calls compared to Version 1. This section details the conversion
process from the Version 1 format to Version 3.

2.5.1 Macro Calls Requiring No Conversion

Version 1 macro calls that need no conversion are:

.CSIGN -RCTLO
.CS1ISpC .RELEAS
.DATE .SETTOP*
.DSTATUS .SRESET
.EXIT .TTINR**
.FETCH .TTOUTR
.HRESET .TTYIN
.LOCK .TTYOUT
«PRINT «UNLOCK
.QSET

*Provided location 50 is examined for the maximum value.

**Except in FB or XM systems.

2-142

PROGRAMMED REQUESTS

2.5.2 Macro Calls That Can Be Converted

The following Version 1 macro calls can be converted:

.CLOSE .RENAME
.DELETE .REOPEN
.ENTER .SAVESTATUS
.LOOKUP .WAIT

.READ .WRITE

The general format of the ..Vl.. macro is:

.PRGREQ chan,argl,arg2,...argn
In this form, chan is an integer between 0 and 17 (inclusive), and 1is
not a general assembler argument. The channel number is assembled
into the EMT instruction itself. The arguments argl-argn are always
pushed either into RO or on the stack.
The ..V2.. -equivalent of the above call is:

.PRGREQ area,chan,argl,....argn
In the ..V2.. <call, the chan argument can be any 1legal assembler
argument; it need not be in the range 0 to 17 (octal), but should be

in the range 0-377 (octal). Area points to a memory 1list where the
arguments argl...argn will go.

As an example, consider a .READ request in both forms:

Vl: .READ 5,#BUFF,#256.,BLOCK
vV2: .READ #AREA,#5,#BUFF, #256.,BLOCK
AREA: .WORD 0 ; CHANNEL/FUNCTION CODE HERE
.WORD 0 ; BLOCK NUMBER HERE
.WORD 0 ;BUFFER ADDRESS HERE
.WORD 0 ;WORD COUNT HERE
.WORD 0 ;A 1 GOES HERE.

Thus, the difference in the calls is that in Version 2 the channel
number becomes a legal assembler argument and the area argument has
been added.

Following is a complete list of the conversions necessary for each of
the EMT calls. Both the Version 1 and Version 2 formats are given.
In Version 3, this function is performed automatically. Note that
parameters inside square brackets, [], are optional parameters. Refer

to the appropriate section in this chapter for more details on each
request.

2-143

PROGRAMMED REQUESTS

Version Programmed Request
Vl: .DELETE chan,dblk
V2: -DELETE area,chan,dblk[,count]
Vl: .LOOKUP chan,dblk
v2: -LOOKUP area,chan,dblk|[,count]
Vl: -ENTER chan,dblk[,length]
v2: -ENTER area,chan,dblk([,length[,count])
Vl: «RENAME chan,dblk
v2: -RENAME area,chan,dblk
Vl: .SAVESTAT chan,cblk
v2: .SAVESTAT area,chan,cblk
Vl: .REOPEN chan,cblk
v2: .REOPEN area,chan,cblk
Vl: .CLOSE chan
vV2: .CLOSE chan
Vl: -READ/.READW chan,buff,went,blk
vV2: .READ/.READW area,chap,buff,wcnt,blk
vVl: -READC chan,buff,wcnt,crtn,blk
vV2: -READC area,chan,buff,wcnt,crtn,blk
Vl: -WRITE/.WRITW chan,buff,wcnt,blk
vV2: -WRITE/.WRITW area,chan,buff,wcnt,blk
Vl1: -WRITC chan,buff,wcnt,crtn,blk
v2: -WRITC area,chan,buff,wcnt,crtn,blk
Vl1: .WAIT chan
v2: .WAIT chan

Important features to keep in mind for Version 3 calls are:

1. Version 3 calls require the area argument, which points
the area where the other arguments will be (unless RO already

points to it and the first word is set up) .

2. Enough memory space must be allocated to hold
required arguments.

3. The chan argument must be a legal assembler argument,

just an integer between 0-17 (octal).

4. Blank fields are permitted in the Version 3 calls.

Any field

not specified (left blank) is not modified in the argument

block.

2-144

CHAPTER 3

EXTENDED MEMORY

3.1 INTRODUCTION

The RT-11 operating system is the single-user system for the PDP-11
family of computers. As such, RT-11 has never supported more than 28K
words of memory. Extended memory support has been reserved for the
multi-tasking systems, since multi-tasking is the usual method for
utilizing a large memory space. In such systems, many tasks are run
simultaneously, but each task is limited to 32K words or less because
of the virtual addressing limitation imposed by the 16-bit word size
and the byte addressing capabilities of the PDP-11. However, users of
both types of systems encounter the same addressing 1limitation and
have to apply one of several techniques for effectively extending the
available logical addressing space.

Two of the standard methods of extending a program are overlaying and
chaining. In overlaying, a program 1is broken into pieces called
segments and assembled separately. The segments are then 1linked
together with an overlay handler. When a segment of code is
referenced that is not resident, the overlay handler reads the
referenced segment into memory, overlaying another segment not
currently needed as specified at 1link time. Communication between

segments must be through the root segment of the program, which is
never overlayed.

Chaining of programs is most effective when the program can be broken
into several completely independent functions that can communicate
through a data file. An example of this is the use of a separate
program to produce a cross reference listing in RT-11. The MACRO
assembler chains to CREF and passes the name of a temporary file
containing the necessary symbol data. CREF produces its listing from
the file and then chains back to MACRO. These techniques are
effective in extending 1logical addressing space, but they have
disadvantages and may not suit a particular application. Overlaying
can increase execution time if a great deal of overlaying occurs
during program execution. Segmenting may not be applicable. The use
of wvirtual disk arrays can considerably slow down array processing.
What is needed is a means of address extension that makes use of the
full memory capabilities of the PDP-11.

RT-11 offers as a SYSGEN option the ability to increase the amount of
memory it supports from 28K words to 124K words. This optional
monitor (extended memory, XM) is a superset of the FB monitor and
extends the memory support capability of RT-11 beyond the 28K-word
restriction imposed by the 16-bit address size of unmapped PDP-11
processors. The XM monitor 1is based on the FB monitor and is
functionally equivalent to it. The XM monitor offers a set of
programmed requests to extend a program's effective logical addressing
space that is a subset of similar requests offered on other PDP-11
systems.

EXTENDED MEMORY

The XM monitor software architecture makes it unnecessary for the user
to have a detailed knowledge of the PDP-11 memory management hardware.
In a mapped system, the user does not need to know where a program
resides in physical memory. Mapping, the process of associating
program segments with available physical memory, is transparent to the
user and 1is accomplished by the memory management hardware. When a
program addresses a location, the memory management unit
determines the location's actual physical address in memory. The
programmed requests use the memory management hardware to perform
address mapping at a higher level that is visible to and controlled by
the user. Programs developed on an unmapped system will run on a
mapped system. This applies to system programs and user programs.
They are called privileged, or compatibility jobs. However, programs
that must use the extended memory monitor will not run on an unmapped
system. These programs are called virtual jobs. Privileged jobs are
not restricted from using the extended memory programmed requests. If

they do so, however, they must run on a mapped system under the XM
monitor.

The address space extension programmed requests supplied with XM
provide the advanced or system programmer with controlled access to
extended memory. Through these requests, the program can allocate a
region of extended memory for its use and can map selected portions of
its virtual address space to portions of that region. A single
segment of address space can be mapped into several successive
segments of memory, providing an effective extension of the logical
address space of the program. The use made of extended memory depends

on the application, and can include such uses as resident overlays,
buffers, or data arrays.

The remaining sections of this chapter emphasize the use of the

programmed requests and their associated parameters, arguments and
data structures.

3.2 THE LANGUAGE AND CONCEPTS OF RT-11 EXTENDED MEMORY SUPPORT

Understanding the language and terminology of extended memory is
essential to effective program utilization of this feature. Following
is a list of terms with their definitions that provides the programmer
with the necessary vocabulary:

1. Address Space - The set of addresses available to a program
while it is running in a specific processor
mode. (RT-11 supports the kernel and user
modes of PDP-11 memory management
hardware.) The virtual address space is
that set of addresses available to a
program in a particular mode. The physical
address space for the mode is the set of
physical addresses to which the wvirtual
addresses are mapped. In general, the
kernel and user modes operate in the same
virtual address space but possibly in
different physical address spaces.

2. Block - A unit of memory. The memory management
unit deals in units of 32 words.

3. Dynamic Region - A region in extended memory created by a
program at run time through an allocation
request.

4. Extended Memory

5. Kernel Mode

6. Low Memory

7. Mapping

8. Memory Management

Fault
9. Mode
10. Page

11. Page Address
Register

12. Page Descriptor
Register

EXTENDED MEMORY

Memory having a physical address greater
than 28K.

One of the modes of the memory management
unit hardware. It is the mapping mode for
RMON and the USR. Contrast with user mode.

Memory having a physical address 1in the
range 0-28K words.

The process of associating a virtual
address with a physical memory location
accomplished by the memory management
hardware.

An error in an extended memory operation
caused by referencing an address not within
the program's virtual address space, and
indicated by an error message returned by
the monitor and displayed at the console
terminal.

The memory management unit provides a
separate set of relocation registers for
use in each of 1its modes. The mode is
specified by bits (15 and 14) in the PS
word.

00
11

Kernel
User

RT-11 uses kernel mode for monitor and USR
operations, and user mode for user
programs. The keyboard monitor (KMON) also
runs in user mode.

A collection of continuous memory addresses
mapped by a single relocation register.
The 32K word virtual address space 1is
divided into eight 4K word sections, called
pages. The lowest address in each page is
a whole multiple of 4096. The length of
the page is some whole multiple of 32 words
ranging from 1 through 128 units. Thus, a
page can vary in size from 32 to 4096
words, in 32 word increments.

A memory management unit register
containing the base address or relocation
constant associated with a page. The
memory management unit has 16 page address
registers: two groups of eight registers
(one register per 4K page). One group is
associated with each of the two processor
modes (user and kernel).

A memory management unit register
containing information associated with a
page. This includes the page length, the
expansion direction, and the access key.
The RT-11 system uses 16 of these
registers; eight for user and eight for
kernel mode.

EXTENDED MEMORY

13. Physical Address - The hardware address of a specific memory
location. The XM monitor supports memory
with a physical address between 0 and 124K

words.
14. Program Logical - Program logical address space is the range
Address Space of effective memory space available to a

program. Normally it is limited to the 32K
words of virtual address space. It can be
extended by overlaying or by using the
memory extension capability of the XM

monitor.
15. Program Virtual - Program virtual address space is the 32K
Address Space (32,768 words) address space accessible

to a program determined by the 16-bit word
size of the PDP-11 processors.

16. Region - A contiguous segment of physical memory.

17. Static Region - A fixed region of physical memory located
in the 0-28K word area. It is created when
the program is loaded and it contains the
program's base segment. This region cannot
be altered by program requests. This
region has an identifier of 0.

18. User Mode - One of the modes of the memory management
unit hardware. It is the mapping mode for
user jobs and KMON. Contrast with kernel
mode.

19. Virtual Address - A 16-bit address (0-177777). Under the XM
monitor, the memory management unit
relocates this address to produce the
physical address of the memory location
that is to be accessed. (Under the SJ and
FB monitors, the virtual address and the
physical address of a memory 1location are
the same.)

20. Window - A segment of program virtual address space

that begins on a 4K boundary, and can vary
in size from 32 to 28K words.

3.3 RT-11 EXTENDED MEMORY FUNCTIONAL DESCRIPTION

The RT-11 software architecture provides programmed requests in the XM
monitor that perform the following operations:

1. Divide virtual memory into address windows

2. Allocate regions in extended memory

3. Map the virtual windows to areas within the allocated regions
These three operations are prerequisite to accessing any location in
extended memory (above 28K). The first two operations can be
performed in any order, but both must be performed before the third

operation can take place. A brief description of each operation
follows.

EXTENDED MEMORY

3.3.1 Creating Virtual Address Windows

The PDP-11 memory management hardware divides virtual memory into
eight pages of 4K (4096) words. The pages are numbered 0 to 7 (see
Figure 3-1) corresponding to eight relocation registers. The XM
monitor divides virtual memory address space into windows. A window
is a segment of address space of any size that must begin on a 4K
address boundary. There can be any number of windows up to a maximum
of eight (0 to 7). The maximum of eight windows 1is a compromise
between monitor size (seven words per window control block) and
allowing enough windows for the wuser to define eight 4K windows.
Windows are similar to overlay segments in that there can be any
number of overlay segments, but only one or two are in memory at any
given time. Any number of windows can be defined (eight actively
defined at a time), but all windows do not have to be mapped at the
same time. For example, a multi-user application could segment memory
as indicated in Figure 3-2 (example 1). In this figure, the wvirtual
address space is divided linearly. The interpreter remains mapped,
but the window containing the user data area is mapped to successive
segments of the region. The extended memory region in the example
occupies 96K words, which is the largest possible region. If each
user 1is to have a 12K-word data area, as the example shows, there can
be up to eight users "sharing" the interpreter at one time. Another
example of window usage involves defining several parallel windows of
various sizes (see Figure 3-2, example 2) that overlay the same
portion of virtual address space.

The size and base of a window is specified by a window definition
block supplied by the programmer. Each actively defined window
requires a window definition block. The mapping requests must
reference the definition block that contains the window
specifications, mapping parameters and status information.

Paye Address Registers Program Virtual Address Space

32K

7 Page 7
28K

6 Page 6
24K

5 Page 5
20K

4 Page 4
16K

3 Page 3
12K

2 Page 2
8K

1 Page 1
4K

0 Page 0

0

Figure 3-1 Page Address Register Assignments
to Program Virtual Address Space Pages

EXTENDED MEMORY

32K
USER 7
DATA
AREA 6 <e——— Extended Memory Region
20K
5
INTERPRETER 4
3 USER NO. 3
0
2
1
0 USER NO. 0
Example 1
12K o o0 ¢ o0
WINDOW 1 WINDOW 3
8K oo “ . WINDOW 2
WINDOW 4
4K [N « o
BASE
SEGMENT
(WINDOW 0)
0
Example 2

Figure 3-2 Examples of Window Creation

A window's identification is a number from 0 to 7 that is an index to
the window's corresponding window block. The address window
identified by 0 is a static window and cannot be changed by programmed
requests. This window is automatically created and mapped into the
static region by the monitor for virtual programs. Every virtual
program contains one static window that maps the program's base
segment. The base segment is mapped into its corresponding allocated
static region of physical memory when the R or FRUN request is
executed.

When a program uses extended memory programmed requests, the program
views the relationship between virtual and logical address space in
terms of windows and regions. Unless a virtual address is part of an
existing address window, the address cannot reference a physical
memory location. Similarly, a window can be mapped only to an area
that is part of an existing region (see Figure 3-3).

However, privileged jobs (discussed in Section 3.3.4.3) usually have

all 32K of virtual address space mapped to the lower 28K and the I/0
page. The window 0 concept does not apply to privileged jobs.

3-6

WINDOW 2
(DYNAMIC)

WINDOW 1
(DYNAMIC)

WINDOW 0
(STATIC)

\

EXTENDED MEMORY

VIRTUAL LOGICAL PHYSICAL
ADDRESS ADDRESS ADDRESS
SPACE SPACE SPACE

/ —
7
/
//
W22 —
/ 7 A
57 —
/// // ‘j
% // DYNAMIC
e REGION
v MONITOR
(RMON)
\
\
\
\
\
\\ STATIC
N \ REGION
\ \
\ ——
\
\
\
\
\

777 - UNMAPPED, BUT AVAILABLE

Figure 3-3

28K

— HIGH ADDRESS OF
PROGRAM'S BASE
SEGMENT

Relationship of Windows and Regions

Consider, for example, the case where a program requires two workspace

areas

(see Figure 3-4):
program's base segment requires 8K words.

space is divided into three windows as follows:

1.
2.
3.

Note that the defined windows overlap page address registers.

Static window, window O,

Dynamic window of 6K words for workspace area 1

Dynamic window of 8K words for workspace area 2

Then, the

one of 6K words and the other 8K words.

virtual

The
address

of 8K words for the base segment

Window

1 uses page address registers 2 and 3 while window 2 uses registers 4

and 5.

Note further that window 1 is only 6K
discontinuity
14K and 16K.

exists in

words
the program's virtual address space between
References made to an address in the 14K-16K range cause

in

size and a

a memory management fault as long as this discontinuity exists.

EXTENDED MEMORY

Page Address Program Virtual
Registers Address Space
32K
7
6
24K
5
WORK AREA 2

WINDOW 2 (DYNAMIC)

. (T =

14K

WORK AREA 1
WINDOW 1 (DYNAMIC)

8K

BASE
WINDOW 0 (STATIC)

I]]]]]IH]I[”]]]]] = DISCONTINUITY IN PROGRAM'S

VIRTUAL ADDRESS SPACE

Figure 3-4 Defining Windows for Mapping

This area of undefined virtual address space is produced by the memory
management hardware restriction that all windows must begin on a 4K
virtual address boundary. In this case, the discontinuity can be
avoided by reversing windows 1 and 2. 1In other situations a linker
option can be used to round the window up to a 4K multiple to avoid
discontinuities.

Once a program has defined the current windows and regions, it can
issue programmed requests to perform operations such as the following:

° Map a window to all or part of a region.

° Unmap a window from one region in order to map it to another
region.

) Unmap a window from one part of a region in order to map it
to another part of the same region.

3.3.2 Allocating and Deallocating Regions in Extended Memory

Another operation that must be performed before the user can access
extended memory is the allocation of dynamic regions. The monitor
provides programmed requests that allocate or deallocate dynamic
regions. A user program can have up to three of these dynamic regions
allocated at any one time. These regions are located in extended
memory and do not include the program's base (or static) region

EXTENDED MEMORY

located in the lower 28K of memory. The size of a dynamic region can
range up to 96K words in 32 word increments. This convention allows
the size to be specified in 16 bits and assures that the regions
always begin on a 32-word boundary. When a region is created, a
unique region identifier is returned by the monitor and is retained in
a 3-word region definition block described later in this chapter. Any
subsequent programmed request referring to this region must wuse the
region identification code supplied by the monitor. The current
window-to-region mapping assignments determine what part of the
program's logical address space can be accessed at any given time.
Figure 3-5 illustrates created regions that compose a program's
logical address space at a discrete time. Since these are dynamic
regions and can be allocated and deallocated several times, the
logical address space can increase or decrease in size as a function
of the controlling program.

Dynamic region deallocation is also accomplished through programmed
requests. When a dynamic region is deallocated (static regions cannot
be allocated or deallocated), the extended memory area is returned to
the monitor's free 1list where it can be used by other jobs. At the
time a region is deallocated, all windows still mapped to the region
are automatically unmapped.

3.3.3 Mapping Windows to Regions

Once the regions and address windows have been defined, the
initialization work is complete. The final step in accessing extended
memory is to connect the windows in virtual memory to the defined
regions of physical memory. This process is referred to as "mapping.”
As stated earlier, the actual mapping operation is a
hardware-implemented function performed by the memory management unit.
After software has set up the necessary parameters in descriptor
blocks, groups of registers in the memory management hardware relocate
the user program address references from virtual to physical memory
(see Figure 3-6). It must be understood that the user program cannot
directly access extended memory without first mapping a portion of
virtual addressing space to the desired portion of physical memory.

EXTENDED MEMORY

LOGICAL
ADDRESS
SPACE

128K

1/0 PAGE

124K

DYNAMIC REGION 3

DYNAMIC REGION 2

DYNAMIC REGION 1

28K

STATIC REGION 0

0

Figure 3-5 Regions Created In Extended Memory

EXTENDED MEMORY

PROGRAM PHYSICAL
VIRTUAL MEMORY
ADDRESS

SPACE
L]
[]
L]
/
/
[/
/1 EXTENDED
/ // / MEMORY
MAPPING / // //A
OPERATIONS [/ /
/
/ /
/ / 28K
!/ /! MONITOR
!/ / (RMON)
/!
!/
!l /
: !/ /
. /! /
// MAPPING
WINDOW 1 WORK AREA 1 / OPERATIONS
(OVERLAY REGION)
WINDOW 0 BASE STATIC
REGION
—_ 0
/)
////////////////% = DYNAMIC EXTENDED MEMORY REGION
—_—_—————
_____ ~Z = CURRENT WINDOW MAPPING

Figure 3-6 Typical Mapping Relationship

The concept of extended memory can be summarized as follows:

1. The user program deals in virtual memory addresses limited to
a 16-bit addressing word.

2. A virtual memory address is relocated to an 18-bit physical
address capable of accessing 128K words of physical memory.

3. A window of virtual memory can be mapped to successive
segments of physical memory by changing offset values through
programmed requests.

There are two ways that windows can be mapped to regions. One is to
map the window after the creation of that window through a .CRAW
(CReate Address Window) programmed request that also performs an
implied .MAP programmed request. Under this condition, a window is
established and mapped with a single .CRAW request and an additional

3-11

EXTENDED MEMORY

programmed request is avoided. However, when mapping previously
defined windows, the .MAP programmed request must be used. This
request can use the same window definition block that was used in the
-CRAW mapping operation to map the associated window into a specified
region. An offset into the region must be specified. If the window

overlaps the end of the region, the system maps as much of the window
as fits in the region.

A window can be unmapped by the .UNMAP programmed request. When a
window is unmapped in this manner, for a virtual job, that portion of
the program's virtual address space becomes undefined. Further
attempts to access this unmapped virtual address space result in a
memory management fault.

When a window is unmapped by the .UNMAP programmed request for a

privileged job (Section 3.3.4.3) the original mapping arrangment is
restored.

For both virtual and privileged jobs, an implicit unmapping operation
is performed whenever an existing mapped window is remapped to another
region or another part of the same region.

3.3.4 Mapping in the Foreground and Background Modes

Extended memory support is available for foreground and background
jobs. Both jobs can use extended memory simultaneously but allocated
memory regions are dedicated and cannot be shared by jobs. Memory
layout for the XM monitor and the types of mapping that can occur are
discussed in the following sections.

3.3.4.1 Monitor Loading and Memory Layout - The locations of various
system components in the XM monitor are very similar to those in the
FB monitor. The monitor is bootstrapped into the high end of the
lower 28K of memory (see Figure 3-7). The resident monitor (RMON)
executes in kernel mode and maps the lower 28K of memory and the 1I/0
page. The kernel vector space is the lower 256 words of physical
memory below the background job. The USR runs mapped in kernel mode
and is always memory resident. KMON is a privileged background job
and runs in user mode, with the same mapping used by the resident
monitor.

3.3.4.2 Virtual Mapping - This type of mapping provides the full 32K
of virtual space for applications that do not need privileged access
to the monitor and 1/0 page. All of the virtual memory space is
available to foreground and background jobs. If the virtual mapping
configuration is desired, it must be specified at the time the program
is loaded into memory. This is done by setting bit 10 of the JSW in
location 44 of the system communication area. The user must do this
with an .ASECT at assembly time or with a patch prior to run time.
The partition where the job is installed is mapped starting at user
virtual address 0. The first 500 bytes are the virtual vector and
system communication area for the job. Window 0 maps from virtual 0
to the program's high address. Any remaining address space from the
program's high address up to 32K 1is available for mapping into
extended memory. Region 0 is defined to include the area from
physical location 0 to program partition high limit.

EXTENDED MEMORY

When a virtual foreground job is loaded, it 1is installed below the
resident monitor. The foreground job is mapped to appear as a virtual
background job. The program is linked at a default base of 1000 and
the region from 0 to 500 is the system communication area and pseudo
vector space for the foreground. The job header (impure area) is
located just below the foreground Jjob but is not mapped. Unused
address space above the foreground job's high limit can be wused to
define windows so that the job can access extended memory.

1/0 PAGE
28K
MONITOR
FG HIGH
VIRTUAL
VIRTUAL
FG
OB ﬁAPPED
FG VIRTUAL J;:g
1000 —#— — —— ———=
VIRTUAL SPACE
] SYSCOM,
FGVIRTUA; VECTORS
FG
IMPURE AREA UN&;jPED
[]
[)
[]
8G
JOB
VECTORS
oK

Figure 3-7 Memory Map with Virtual Foreground Job Installed

3.3.4.3 Privileged or Compatibility Mapping - This type of mapping is
the default mapping that provides compatibility between the FB monitor
and the XM monitor (see Figure 3-8). This mapping arrangement gives
free access to vectors, monitor and the I/O page. It also is the
default mode under which all RT-11 system programs run. In the
privileged or compatibility mapping arrangement, the program is
normally mapped to the lower 28K of memory plus the I,/0 page.
However, provisions are made through programmed requests for windows
to be created and mapped to regions allocated in extended memory so
that the effective program space can be increased beyond the virtual
address space. In this arrangement, when a window is created and
mapped, the default privileged mapping for this space set up by the
monitor is temporarily unmapped and the address space is mapped
through the window definition block to the new region of memory. Then
when the window is unmapped, that address space is returned to the

EXTENDED MEMORY

privileged mapping. This type of mapping is particularly important
for the user who desires to include interrupt service routines in the
system. Interrupt service routines must run in kernel mode. They

depend on privileged mapping being identical to kernel mapping.

The privileged job requiring access to the monitor, vectors, and 1I/0
Page is limited in the amount of virtual address space it has
available to map to extended memory. The user must select portions of
the address space that can be borrowed for memory extension
operations. If user interrupt service routines are part of the
program, the vectors, I/0 page, user interrupt service routines, and
possibly the monitor must remain mapped at all times that an interrupt
can occur.

3.3.4.4 Context Switching of Vvirtual and Privileged Jobs - The two
types of jobs (privileged and virtual) are context switched. When the
monitor switches between a virtual and a privileged job, it saves
context information about the job it switches out, and restores
context information about the job it switches in. When a job is
switched out, the contents of the memory management mapping registers
for the job are not saved. User programs should not manipulate these
registers directly because their contents are lost when
context switching occurs. The monitor restores job mapping solely
from the window and region definition blocks.

When a virtual job is switched in, the monitor disables all user
mapping and scans the job's window definition and mapping data. The
monitor maps only that portion of the job's virtual address space that
was defined in a window and mapped to a region at the time the job was
switched out. Any attempt to access an unmapped address causes a
memory management fault. Any unused portions of virtual address space
remain unmapped and discontinuities can appear. The virtual job can
use the unmapped space by allocating a region in extended memory and
mapping to that region.

When a privileged job is switched in, the monitor first sets up the
job's user mapping to be identical to kernel mapping (the lower 28K of
physical memory and the I/0 page). Next, the monitor scans the job's
window definition and mapping data. If no windows had been defined at
the time the job was switched out, the default kernel mapping remains.
If windows had been defined and mapped, those mappings selectively
replace the default kernel mapping for the privileged job.

NOTE

User programs should never attempt to
access the memory management unit
mapping registers directly. These
registers should always be addressed
through the appropriate programmed
requests.,

3.3.5 I/0 to Extended Memory

The monitor supports I/0 within a job's wvirtual address space
regardless of the physical location of the data buffers. However, the
buffers must be in a segment of logical space currently mapped at the
time a L.READ or .WRITE request is issued. The buffers must also be
physically contiguous, which implies that they be completely within an

3-14

EXTENDED MEMORY

address window. This restriction is necessary because I/0 buffer
addresses are specified as virtual addresses in the program. The
monitor converts the virtual address to an internal physical address
representation when the programmed request is executed. This process
allows the user program to unmap the buffers on a .READ/.WRITE or
.READC/.WRITEC request upon return from the programmed request. Note
however, that completion routines must remain mapped until the
transfer is complete.

3.4 SUMMARY OF PROGRAMMED REQUESTS

This section briefly describes each of the RT-11 extended memory
programmed requests and its associated data structures, arguments and
parameters. For convenience, the following requests are ordered by
functions and alphabetized within these functional groupings.

Window Requests

.CRAW - Create an address window (3.4.1.3)
.ELAW - Eliminate an address window (3.4.1.4)

Region Requests

.CRRG - Create a region (3.4.2.3)
.ELRG - Eliminate a region (3.4.2.4)

Mapping Requests

.GMCX - Get mapping status (3.4.3.1)
.MAP - Map an address window (3.4.3.2)
.UNMAP - Unmap an address window (3.4.3.3)

The extended memory programmed requests are individually capable of
performing a number of separate actions. For example, a single Create
an Address Window (.CRAW) request can unmap and eliminate conflicting
address windows, create a new window, and then map the new window to a
specified region. The complexity of the requests requires a special
means of communication between the user program and the RT-11 monitor.
The communication is achieved through data structures that:

1. Allow the program to specify which options it wants the
monitor to perform.

2. Permit the monitor to provide the job or program with details
about the outcome of the requested actions.

Two types of data structures, the region definition block and the
window definition block, are used by the requests to provide
information to the XM monitor and to receive information from it.
Every extended memory programmed request uses one of these structures
as its communication area between the job and the monitor. Each
issued request 1includes in the programmed request parameter block a
pointer to the appropriate definition block. Values stored by the job
in a block define or modify the requested operation. After the
monitor has carried out the specified operation, it returns values in
various 1locations within the block to describe the actions taken and
to provide the program with information useful for subsequent
operations.

EXTENDED

MEMORY

Program Program
Virtual Logical Physical
Address Address Address
Space Space Space
-1 28K
/0 PAGE
124K
F 96K
1/0 PAGE 1/0 PAGE
- 64K
USER USER
Jos Jos
PRIVILEGED JOB
- 32
1/0 PAGE 1/0 PAGE K
28K
MONITOR MONITOR MONITOR

MONITOR

Figure 3-8 RT-11 Privileged Mapping

EXTENDED MEMORY

3.4.1 Programmed Requests to Manipulate Windows

All programmed requests described in this section have a common user
data structure, called a window definition block, which is used to
store information for the XM monitor and to receive information from
it. To use these programmed requests, the window definition block
must be defined and set up according to the rules explained 1in the
following section.

3.4.1.1 wWindow Definition Block - The group of programmed requests to
manipulate windows must specify a pointer to the window definition
block. The window definition block (see Figure 3-9) is used to define
a window and store the returned window identification. It can be
created at assembly time by the macro, .WDBBK.

The format of the window definition block is a seven-word block as
shown in Figure 3-9.

SYMBOLIC BYTE
OFFSET BLOCK FORMAT OFFSET
W.NID
W NAPR BASE PAR WINDOW 1D 0
W.NBAS VIRTUAL BASE ADDRESS (BYTES) 2
W.NSIZ WINDOW SIZE (32W BLOCKS) 4
W.NRID REGION 1D 6
W.NOFF OFFSET IN REGION (32W BLOCKS) 10
W.NLEN LENGTH TO MAP (32W BLOCKS) 12
W.NSTS WINDOW STATUS WORD 14

Figure 3-9 Window Definition Block

The first three words are used to establish the window and contain the
following information:

W.NID is a one-byte -window identifier code returned by the
monitor. This identifier must be used in mapping
requests involving this window.

W.NAPR is a one-byte value supplied by the user specifying the
starting virtual address of the window. Windows must
start on a 4K virtual address boundary. The one-byte
value 1is a digit in the range 0 through 7. The digit
is the page address register corresponding to the
desired 4K virtual address (see Table 3-1). Refer to
Figures 3-1 and 3-4, which illustrate the page address
registers.

3-17

EXTENDED MEMORY

Table 3-1
Virtual Address Boundaries

Starting Page Address Register
Virtual Address (Octal) (W.NAPR)

0 (0K words)
20000 (4K words)
40000 (8K words)
60000 (12K words)

100000 (16K words)
120000 (20K words)
140000 (24K words)
160000 (28K words)

~NO Ve WN O

NOTE

A value of 0 should not be used in
W.NAPR since 0 cannot be specified in a
.CRAW request.

W.NBAS is the base virtual address of this window, returned by
the monitor. This information is redundant with the
W.NAPR field, but is provided for user convenience and
as a check on the window specification.

W.NSIZ is a one-word value supplied by the user specifying the
size of the window in 32-word blocks. If it is not a
multiple of 4K words, a discontinuity occurs in the
virtual address space, since the next window definition
must start on a 4K boundary.

The remaining fields of the window definition block are provided for
mapping the window to a region. This same window block can be used
with the .MAP request, and since the .CRAW request returns window data
in its proper = place, an extra operation 1is avoided. The
region-specific data fields returned by the monitor to the window
block are as follows:

W.NRID is the region identifier for the region to be mapped,
as returned by the .CRRG request.

W.NOFF is the offset into the region at which to start mapping
the window, in blocks of 32 words.

W.NLEN is the length of the window to map to the region, 1in
32-word blocks.. If it is 0, the entire window is
mapped, or as much as will fit into the region. If
W.NLEN 1is specified, that length portion of the window
is mapped. The actual length of the window mapped is
returned in W.NLEN.

In addition to creating a window, the .CRAW request 1is capable of
creating a window and then mapping that window to a region by
specifying the proper W.NSTS field as described below.

W.NSTS is the window status word.

3-18

EXTENDED MEMORY
The window status pits are defined as follows:

Input

WS .MAP Map the window to the specified region after creating
it, thus saving an explicit .MAP request.

Output
WS .CRW Address window was successfully created.

WS .UNM One or more windows were unmapped to create and map this
window.

WS.ELW One or more windows were eliminated.

3.4.1.2 Using Macros to Generate Window Definition Blocks - There are
two macros used to dgenerate window definition blocks. The macro
.WDBDF defines the offsets and status word bits for the window
definition block. The second macro, .WDBBK, actually creates a window
definition block. When creating a window definition block with the
.WDBBK macro, the offset and status word definitions are automatically
supplied because the .WDBBK macro invokes the .WDBDF macro. Hence,
the programmer does not need to specify the .WDBDF macro when a .WDBBK
is being used. The .WDBBK macro has the following form:

.WDBBK wnapr ,wnsiz|,wnrid,wnoff,wnlen,wnsts]

where:

wnapr is the page address register supplied by the user
specifying the starting virtual address of the window
(see Table 3-1).

wnsiz specifies the size of the window, in 32-word blocks.

wnrid is the region identifier for the region to be mapped.

wnoff is the offset into the region at which to start mapping
the window, in 32-word blocks.

wnlen is the length of the window to map to the region, in
32-word blocks. A value of 0 maps as much of the
window as possible.

wnsts is the window status word.

When it is desired only to define the offsets and status bits the
.WDBDF macro is invoked by the following call:

.WDBDF

EXTENDED MEMORY

When this macro is invoked, the following symbols are defined:

l. Window Definition Block Offsets

W.NID =0
W.NAPR =1
W.NBAS = 2
W.NSIZ = 4
W.NRID = 6
W.NOFF = 10
W.NLEN = 12
W.NSTS = 14

2. Window Definition Block Byte Size
W.NLGH = 16

3. Window Definition Block Status Word Bits

WS.CRW = 100000
WS.UNM = 40000
WS.ELW = 20000
WS.MAP = 400

To illustrate the use of these macros to create a window definition
block, consider the following example:

A window definition block is to be created defining a window that
is 76 decimal blocks long (76 x 32, or 2432 decimal words long)

beginning at virtual address 20K, or 120000 octal. Page address
register 5 is used.

The defined window is to be mapped to a region beginning 50
decimal blocks (1600 decimal words) from the base of the region.
The portion of the region mapped is to be equal to the length of
the window or the length remaining in the region, whichever is
smaller.

Macro Call: .WDBBK 5,76.,,50.,,WS.MAP

Expands to: .BYTE 0,5 ;window ID = 0, to be

;returned by monitor.
;window starts at 20K,
;juses address register 5.

.WORD O ;base virtual address of
;window, to be returned
;by monitor.

.WORD 76. ;window size in 32-word
;blocks.

.WORD 0 ;region ID, to be returned
;by .CRRG request
;into the region definition block.

.WORD 50. ;offset into region, in 32-word
;blocks, at which to start
;mapping the window.

.WORD 0 ;length of window to map.
;0 = map as much as possible.
;actual length mapped is
;returned here.

.WORD 400 ;window status word; 400
;causes .CRAW to also map.

EXTENDED MEMORY

Note that setting up the window definition block does not in itself
create the window. The .CRRG request must be issued to create the
region and return the region ID to the region definition block. If
the .CRAW request is to perform an implied .MAP, the region ID must be
moved from the region definition block to the window definition block.
Then the .CRAW request must be issued to create the window.

.CRAW

3.4.1.3 Create an Address Window (.CRAW) - This request defines a
virtual address window and optionally maps it into a physical memory
region. Mapping occurs if the user has set the WS.MAP bit in the last
word of the window definition block. Since the window must start on a
4K boundary, the program only has to specify the page address register
to use and the window size in 32-word increments. If the new window
being defined overlaps previously defined windows (except window O,
the static window reserved for the virtual program's base segment),
the previously defined windows are eliminated before the new window is
created.

Macro Call: .CRAW area[,addr]
where:

area is the address of a two-word argument block as indicated
below.

6 | 2
addr

addr is the address of the window definition block (see
Section 3.4.1.1). This argument is optional if the user
has filled in the second word of the area argument block
with the address pointer.

Errors:

When errors are detected during the execution of this request, the C
bit is set after execution is complete and the following error codes
are contained in error byte 52.

Codes: 0 - Indicates a window alignment error. The window 1is too
large or W.NAPR is greater than 7.

1 - Indicates that no window control blocks are available.
The user should eliminate a window first or redefine the
division of virtual space into windows so that no more
than seven are required.

EXTENDED MEMORY

.ELAW

3.4.1.4 Eliminate an Address Window (ELAW) - This request eliminates
a defined window. An implied unmapping of the window occurs when its
definition block is eliminated.

Macro Call: .ELAW area(,addr]

where:
area is the address of a two-word argument block as indicated
below:
¥ | 3
addr
addr is the address of the window definition block for the
window to be eliminated.
Errors:

When errors are detected during the execution of this request, the C
bit is set after execution is complete and the following error code is
contained in error byte 52 (refer to Section 3.5 for explanation).

Code: 3 - Indicates an illegal window identifier was specified.

3.4.2 Programmed Requests to Manage Extended Memory Regions

As in the case of the programmed requests to manipulate windows
(section 3.4.1), all programmed requests in this section also have a
common user data structure, the region definition block. To use these
programmed requests, the region definition block must be defined and
set up according to the rules and syntax explained 1in the following
section.

3.4.2.1 Region Definition Block - The programmed requests to manage
extended memory regions must specify a pointer to the region
definition block. The region definition block is a three-word block
describing the region and having the format shown in Figure 3-10.

SYMBOLIC BYTE
OFFSET BLOCK FORMAT OFFSET
R.GID REGION ID 0
R.GSIZ REGION SIZE (32w BLOCKS) 2
R.GSTS REGION STATUS WORD 4

Figure 3-10 Region Definition Block

EXTENDED MEMORY

The words contain the following information:

R.GID is a unique region identifier returned by the
monitor. This identifier must be used when referring
to the region in other program requests.

R.GS12Z is the size of the dynamic region, in 32-word blocks,
specified by the user.

R.GSTS is the region status word. The region status bits
are defined as follows:
RS.CRR =1 if region was successfully created.
RS.UNM =1 if one or more windows were unmapped as
a result of eliminating this region.
RS.NAL =1 if the region specified was not actually

allocated at this time.

3.4.2.2 Using Macros to Generate Region Definition Blocks - There are
two macros used to generate region definition blocks. The first
macro, .RDBDF, defines the offsets and status word bits for the region
definition blocks. This macro is invoked with the following call:

. RDBDF

When the macro is invoked, the following symbols are defined:

1. Region Definition Block Offsets

R.GID = 0
R.GSIZ = 2
R.GSTS = 4

2. Region Definition Block Byte Size

R.GLGH = 6

3. Region Status Word Bits

RS.CRR = 100000
RS.UNM = 40000
RS.NAL = 20000

The second macro, .RDBBK, actually creates the region definition
block. The .RDBBK macro has the following form:

.RDBBK rgsiz
where:
rgsiz is the size of the dynamic region, in 32-block words,

specified by the user.

EXTENDED MEMORY

When the region definition block is Created with the .RDBBK macro, the
region definition block offsets and status word are automatically
defined. Therefore, the programmer only needs to specify .RDBBK and
this macro automatically invokes .RDBDF.

For example, consider the following case. A region of 102 decimal
blocks (3264 decimal words) is to be allocated.

The .RDBBK macro sets up the region definition block.

RGADR: - RDBBK $#102.
Expands to: RGADR: .WORD 0 ;region ID=0, to be
;jreturned by the
;monitor.

«WORD 102. ;size of the region
;in 32-word blocks.
«WORD 0 ;region status word.

.CRRG

3.4.2.3 Create a Region (.CRRG) - The .CRRG request directs the
monitor to allocate a dynamic region in physical memory for use by the
current requesting program. Symbolically, this request is defined as
follows:

Macro Call: .CRRG area [,addr]

where:
area is the address of a two-word argument block as
indicated below:
3 [o
addr
addr is the address of the region definition block for the
region to be created.
Errors:

When errors are detected during the execution of this request, the C
bit is set after execution is complete and the following error codes
are contained in error byte 52,

Codes: 6 - Indicates no region control blocks available. A region
must be eliminated.

7 - Indicates a region of the requested size cannot be
created. The size of the largest available region is
returned in RO.

10 - Indicates an illegal region size specification. Requests
of 0 size and >96K words are illegal.

3-24

EXTENDED MEMORY

.ELRG

3.4.2.4 Eliminate a Region (.ELRG) - The .ELRG request directs the
monitor to eliminate a dynamic region in physical memory and return it
to the free list where it can be used by the other jobs.

Macro Call: .ELRG area [,addr]

where:
area is the address of a two-word argument block as
indicated below:
3 | 1
addr
addr is the address of the region definition block for the
region to be eliminated. Windows mapped to this region
are unmapped. The static region (region 0) cannot be
eliminated.
Errors:

When errors are detected during the execution of this request, the C
bit is set after execution is complete and the following error code is
contained in error byte 52.

Code: 2 - Indicates an illegal region identifier was specified.

3.4.3 Mapping Requests

The mapping requests explained in this section map virtual address
windows into dynamic regions in extended memory. To perform this
function, the rules and syntax described 1in the following sections

must be followed.
.GMCX'

3.4.3.1 Mapping Status (.GMCX) - The .GMCX request returns the
mapping status of a specified window. Status is returned in the
window definition block, and can be used 1in a subsequent mapping
operation. Since the .CRAW request permits combined window creation
and mapping operations, it allows entire windows to be changed by
modifying certain fields of the window definition block.

The .GMCX request modifies the following fields of the window
definition block:

1. W.NAPR - the base page address register of the window
2. W.NBAS - the window base virtual address

3. W.NSIZ - the window size in 32-word blocks

EXTENDED MEMORY

If the window whose status is requested is mapped to a region, the
.GMCX request modifies the following additional fields in the window
definition block:

1. W.RID - the region identifier

2. W.NOFF - the offset value into the region

3. W.NLEN - the actual length of the mapped window

4. W.NSTS - the state of the WS.MAP bit is set to 1 in the

window status word.
Macro Call: .GMCX areal,addr]
where:

area is the address of a two-word argument block as indicated
below:

3 | 6
addr

addr is the address of the window definition block where the
specified window's status is returned.

Errors:

When errors are detected during the execution of this request, the C
bit is set after execution is complete, and the following error code
is contained in error byte 52.

Code: 3 - Indicates an illegal window identifier was specified.

.MAP

3.4.3.2 Map a Window (.MAP) - The .MAP request maps a previously
defined address window into a dynamic region of extended memory or
into the static region in the lower 28K. If a window 1is already
mapped to a region, an implicit unmapping operation is performed.

Macro Call: .MAP areal(,addr]
where:

area is the address of a two-word argument block as indicated
below:

36 | 4
addr

3-26

EXTENDED MEMORY

addr is the address of the window definition block containing
a description of the window to be mapped and the region
to be mapped to (see Section 3.4.1.1).

Errors:

When errors are detected during the execution of this request, the C
bit 1is set and the following error codes are contained in error byte
52.

Codes: 2 - Indicates an illegal region identifier was specified.

3 - Indicates an illegal window identifier was specified.

4 - Indicates the specified window was not mapped.

.UNMAP

3.4.3.3 Unmap a Window (.UNMAP) - The .UNMAP request unmaps a window
and flags that portion of the program's virtual address space as being
inaccessible. When an unmap operation is performed for a virtual job,
attempts to access the unmapped address space cause a memory
management fault. For a privileged job, the default (kernel) mapping
is restored when a window is unmapped.

Macro Call: .(UNMAP area|,addr]
where:

area is the address of a two-word argument block as indicated

below:
3 | s
addr
addr is the address of the window control block that describes

the window to be unmapped.

Errors:

When errors are detected during the execution of this request, the C
bit is set and the following error codes are contained in error byte
52.

Codes: 3 - Indicates an_illegal window identifier was specified.

5 - Indicates the specified window was not mapped.

3.5 SUMMARY OF STATUS AND ERROR MONITORING

The XM monitor performs error checking and status monitoring. All
extended memory programmed requests generate error codes as indicated
in Table 3-2. When errors are detected, the C bit is set on return
from the program request, and the error code is returned in error byte

EXTENDED MEMORY

52. In addition to the error codes, two status words are provided to
log the status of the requested operations. After completing the
requested operation, the monitor sets appropriate bits in the region
status word or the window status word (depending on the type of
request) to indicate what actions were taken. These status words were
discussed in conjunction with the window and region definition blocks.
Table 3-3 provides a convenient summary of the byte 52 error codes and
status word bits.

3.6 USER INTERRUPT SERVICE ROUTINES WITH THE XM MONITOR

There are three restrictions to using user interrupt service routines
with the XM monitor. Such routines can only be used within a
privileged job, they must be resident in the lower 28K words of
memory, and they must be permanently mapped while they are active.

Care must be used in locating buffers and in setting up vectors for
these routines. When an interrupt occurs, the interrupt vector is
always taken from kernel space. In XM, kernel space always maps the
lower 28K words of memory and the I/0 page. The contents of the
interrupt vector are placed in the PC and PS, causing the interrupt
service routine to execute in the mapping mode specified in the PS of
the interrupt vector.

It is possible to execute an interrupt service routine in either mode:
kernel or user. However, due to protection mechanisms in the mapping
hardware, it is impossible to go from user mode to kernel mode when
dismissing an interrupt with an RTI instruction. Consequently, if an
interrupt service routine is executed in user mode, it is impossible
to return to kernel mode. This guarantees a system crash if the
interrupt has interrupted the monitor. Therefore, all interrupt
service routines must be serviced in kernel mode (that is, the high
byte of the second word of the vector pair must be zero). The
interrupt service routine will then execute in kernel mode. This is
normally no problem, since privileged job mapping defaults to kernel
mode. Thus, old programs that ran under RT-11 version 2C or earlier
versions should function properly.

Privileged jobs can also use the memory extension programmed requests.
However, the portion of user virtual memory mapped to extended memory
at the time of the interrupt 1is not accessible to the interrupt
service routine. This is why the interrupt service routine must use
addresses that are permanently mapped in the 1lower 28K words of
memory.

EXTENDED MEMORY

*pa3ysanbai sem spiom ¥96 ueU] 193ea1b az1s e 10

0 3O 9z1Ss Y °*uoliedo1jidoads azis uo1bai tebarll X 0T
‘0¥ Ul pauiny
-21 st uolbai arqerieae 3sabieyl 8yl jo azis Iyl
©pa3ea1d aq 3jouued 3z1s pajsanbai ay3l 3o uoibai vy X L
*pajeulwl1(ad aq 3Isnu
uo1bai1 y °suo1bai inoj ueyiz siow 33e31D 03 3dwalav X 9
*paddew 30U SEM MOpUlAM pat31oads X S
*uUO13BUTQWOD 9Z1S MOpPUIM/3I3SIJO uo1bai pireaur X ¥
cpa131oads 131313uUapl Mopulm Teballl X X X X €
+pat13ioads 191313uapt uolbai Teballl X X z
*SMOpulM 03ul 3oeds
{en311A 3O UOISTAIP 3Y3l dU1JapPal 1O 3ISIT3] MOpUlAM
e dewup °smopuilm 3ybis ueyz aiow 33e31d 03 3dwailav X T
*mopuim
pa1310ads Ajiebaiil 10 ‘[ueyy 133e91H6 S1 Y4UN'M
1c sbie] 003 S1 MOpPUIM *10113 JuawubiITe MOPUTM X 0
asnvd dVWNQ"® | dVYW-® XOWO"* oy13* MY13° -t o MVYO* 9pod
10113
S1s3n03Y

sapo) 10117 KIOWSW POpPUIIXT

Z-€ °Tqel

3-29

EXTENDED MEMORY

*1031uow Kq 3ndiyno

10 i13sn Kq 3ndur

*3sanbai
MY¥D* e ut paddew aq 03
S1 Moputm e 31 T 03 33§

3sanbai MwyD e u1l
P23PUTWITD 9I9M SMOpUlM
dI10W 10 3UO jJI [03 3I8S

*3sanbai 4dvW® © 10 MWD ©
Aq paddewun aiom smopuim
d10W 10 dUO 3JT [O3 3IaS

*pajeaid
A1injyssaoons sem mop
-utm ssaaippe 31 T O3 33§

0o¥

00002

0000%

00000T

andug

3nd3ano

and3ino

3nd3ino

€T

1A

ST

dVW " SM

MT3°SM

WNN°SM

MYD° SM

SLSN"M

piOoM SN3EIS MOPUTIM

8wty S1y3l 3e
pa3edoT[e 30U Sem palyJ
-103ds uo1bai 31 T 03 33§

‘uotbai

e burjeutwi(® jo 3[nsai e
se paddewun aiam smopuim
@I10W 10 dUO JT [O3 3I8S

*uotjedorie uoibaia
In3ssadons 103 T 03 33§

00002

0000¥%

00000T

3ndango

andino

and3ino

€1

VT

ST

TUN° SY

WNO°SY

¥y0° sy

SL1SO° ¥

piom snije3s uoilbay

uoT13TUT3IaQ/SIUBWWOD)

(1e3adso) 31g

»3ndano/3andur

1aqunN
g

SWeN
I1g

dWeN
o110quis

pioM snie3s

SpIoOM sn3e3s AIowsy popuslixd

£-¢ 919qel

3-30

3.7

EXTENDED MEMORY

EXAMPLE PROGRAM

This section provides a complete and detailed MACRO 1listing of a
sample program that uses all the RT-11 extended memory programmed
requests.

«TITLE XxMCOPY

oNLISI BEX

eMCALL JUNMAP, ,ELRGy) ELAW

oeMCALL ,CRRG, (CRAW, MAP, (PRINT, (EXIT

«MCALL ROBBK, ,wOBBK, ,TTYQUT, ,nDBDF, ,ROBDF

O"C‘LL oWRITw, ,READN, ,CLOSE, ,CSIGEN

JSW T 44

JOVIRT = e sVIRTUAL BIT IN THE JSw

ERRBYT = Se

APR H 1

APR} = 2

BUF z wWOBew NBAS 3GET THE VIWKTUAL ADDRESS

BUF Y s wOBiew NBAS ;GET SECOND BUFFER

3 VIRTUAL ADDRESS

CORSI¢ = 496,

PAGSI¢Z = CORS1Z/256,

WRNIDY = wDB Y * NWeNR]ID

WRNID s wDH + noNRID

oASEC!

o 8 JSw
+"ORD J,VIRT sMAKE THIS A VIRTUAL JOB
oPSECT

PRRRRRRARAANAR AR AR ARA AR AR N A RARRAARA AR RARRN RN AR

(R
e
(A
[
’Q

EXTENDED MEMORY,FILES ARE VER

ARE USED IN THE VERIFICATION,

XM MONITOR EXAMPLE =< OPENS INPUT FILE AND
WRITES TO OUTPUT FILE USING 4Kk BUFFERS IN

*

*

IFIED AFTER *
*

COPYING,TwO 4r BUFFERS IN EXTENDED MEMORY

»

,ﬂﬁﬁt..itﬁ.t.ittt'ltttttﬁﬁ'.ittﬁ.Itﬁiiittﬁﬁﬁ'iﬁtl

+WDBOF JCREATE wINDOW DEFINITION BLOCK SYMBOLS
+RDBDF sCREATE REGION DEFINITION BLOCK SYMBOLS
START ¢
S8 «CSIGEN MENDCRE,#DEFLT, ¢
BCS Ss
+CRRG SCAREA, #ROB sCREATE REGION
BCC 10$
JSR PC,»ERROR JERROKR REPOQORT 1T
1083 MmOV RDB, WRNID 1MOVE REGION 1ID
+CRAW 8CAREA, 8w0B JCREATE »INODOW®
BCC 23 INO ERROR
JSR PC,ERROR
208 s MAP SCAREA,swUB- §MAP wINDOW
8CC 3os tNO ERROR
JSR PCsERROR $REPCRYT EWROUR
3os: CLR Ry sCOUNT KEG,
READ +READW SRAREA,#3,BUF,#CORSIZ,R}
8CC L0o0P ING ERROR
JSR PC/,ERRCR
LOOP} ChMP R@,®CORSIZ :SHORT READ
BNE CLOSE sCLOSE FILE,SHORT READ
WRITEs L WRITw ®RAREA,s9,8UF,8CCRSIZ,R]
BCC ADDIT §NO ERROR
JSR PCsERROR
ADDIT:s ADD BPAGSIZ,R1 ;60 GET NEXT BLCCk
BR READ sREAD LOOP

EXTENDED MEMORY

CLOSEss MOV R2,R2 $SAVE NUMBER UF wQRDS
oWRITw WRAREA,8Q2,BUF,R2,Kk] swRITE LAST BLOCK
8CC CHECK sNO~ VERIFY DATA
JSR PCs,ERROR JERROR REPORT IT7T

CHECKss L,CRRG ¥CAREA, #RUBY $CREATE A REGIOw
8CC 353 sNO ERROR nERE
JSR PCoERRQOR §REPORT ERROR

358 MOV RDB1,WRN]ID] JGET KEGIUN JU TO WINDOw

,tttitttttﬁtiﬁt'ttttttttﬁﬁtttttttttﬁﬁttttt'tttttt

1t EXAMPLE USING THE ,CRAW REQUEST DOING AN »

j* IMPLIED ,MAP REQUEST, *

IR R AR R AN AR R R RN R AR R RN A AR RN AR A NARRA NN TR RN AN ARN
+CRAMW SCAREA,#nwDB1 JCREATE WINDOwW USING

3 IMPLIED ,MAP
8cC VERIFY JCHECR THE DATA
JSR PCs,ERRQR JERROR REPORT [T

VERIFYSS CLR R} JCOUNT REGISTER

GETBLKs ,READW W#RAREA,#Q,BUF,sCORSIZ,R]
8CC 408
JSR PCsERRQR

4083 «READW SRAREA,#3,BUF}1,®CORSIZ,R}
8CcC Se$ §NO ERROR
JSR PC,ERROR JERROR REPORT IT

Ses: Cmp R@,#CORSIZ $IS IT A SHORT READ
BNE 608 §NO 1T WASNT
MOV SCORSIZ,Ry JREGULAR BUFFER SIZE
BR 659 360 VERIFY DATA

60S: MOvVB #=1,SFLAG $SET SHORT BUFFER FLAG
MOV RO/RY §GET SHORT BUFFER

653 MOV BUF,R2 $GET BUFFER ADDRESS
MOV BUF1,R3 $GET NEXT BUFFER

7083 CcMP (R2)+,(R3)¢ JVERIFY DATA
BEQ 1£1) $OATA IS THE SAME
JSR PCoERRDAT

7583 DEC Ry JARE wE FINISHED
BNE 708 §NO WE ARENT
ADD BPAGS1Z,)R1 $JGET NEXT PAGE
7878 SFLAG JHAS SHORT BUFFER BEEN READ
BMI ENDIT JYES IT HAS
BR GETBLK

ENDITss ,CLOSt w0 $CLOSE CHAN @
+CLOSE 3 jCLOSE CHANNEL 3
+PRINI SENDPRG
JEXIT

JRARRRARARRRANARNRARNRARN AR AARANA R AARNRARNRARANSAANR
)% EXAMPLES SHOWING THE COMPLEMENTS OF THE ,MAP *

% ,CRRG, AND THE ,CRAw REQUESTS, .
’ﬁﬁtﬂtt.ﬁﬁi*t’ﬂﬁﬁt.ttﬁttttt...t.tttﬁ.tt'ttt.Qtﬁtt
+ELRG SCAREA,®RDB JELIMIMATE A REGION,
3 IMPLIES ELAW AND UNMAP
+UNMAP #CAREA,#wDB{ JUNMAP wINDOW
oELAN SCAREA,swDB] JELIMINATE A wWINOOn
+ELRG SCAREA,8RDB1 JELIMINATE A REGION
ERRORs (PRIN1 #ERR
JEXIT
ERRDAT: ,PRINT #ERRBUF
oEXIT
RDBs «ROBBK CORSIZ2/32, sOEFINE REGION
w083 +NDBBK APR,CORSIZ/32,
RDB1 +ROBBK CORSIZ/32, $DEFINE SECOND REGION
wDB1 «WDBBX APR1,CORSIZ/32,¢2¢8sCORSIZ/32.swS,MAP
CAREA: ,BLKW 2
RAREAT ,BLKnW 6

EXTENDED MEMORY

ENOPRGs: ,ASCIC /ENO OF EXAMPLE/

ERR: +ASCIZ /ERROR IN REQUEST/

ERRBUF 3 ,ASCIZ /ERRGR IN DATA/
+EVEN

DEFLTs RADSY /mMAC/

SFLAG: ,BLKB e $SHORT BUFFER FLAG
«EVEN

ENDCRE = Y-

LEND START

3.8 EXTENDED MEMORY RESTRICTIONS

There are some restrictions that the user of RT-11 extended memory
support must be aware of. Some restrictions are physical in nature
and imposed by hardware limitations. These restrictions are generally
discussed 1in the descriptions of the applicable programmed requests.
Other restrictions are on the use of the system facilities and are
discussed below:

1. Device handlers to be used under the XM monitor must be
loaded 1into memory through the keyboard monitor LOAD command
before they can be used. User interrupt service routines are
not supported for virtual jobs.

2. Some programmed requests are restricted when used with the XM
monitor. The requests and their restrictions are as follows:

Programmed Request Restriction

.CDFN The channel area specified must be entirely in
the lower 28K of physical memory.

.QSET The queue element space specified must lie
entirely in the lower 28K of physical memory,
and space must be allowed for 10 words per
queue element.

.CNTXSW This request 1is not available for virtual
jobs. There is no need to context switch the
system communication area.

.SETTOP This request returns the high limit for the
job. This address is always within the lower
28K of physical memory. .SETTOP does not
reflect any mapping to extended memory that
may be in effect.

3.9 SUMMARY AND HIGHLIGHTS OF RT-11 EXTENDED MEMORY SUPPORT

This section gives the highlights and summarizes the basic operations
of RT-11 extended memory support. Since this 1is a new and also
complex concept, this section is provided as an aid to understanding
the material 1in this chapter. More than one reading of this chapter
is necessary to fully understand its contents.

The following material can be used to review the basic operations and
features, and subsequent readings of the chapter can be keyed to
amplify this abbreviated discussion.

EXTENDED MEMORY

3.9.1 Extended Memory Prerequisites
The following hardware and software components must be incorporated

into the RT-11 operating system to utilize the extended memory
feature. The system cannot be bootstrapped without these components.

1. Memory management unit
2. XM monitor and handlers

3. Extended instruction set (EIS)

3.9.2 What Is Extended Memory Support?
Extended memory support is the technique of extending the addressing

capability of the RT-11 system beyond its limitation of 32K words
imposed by the 16-bit PDP-11 processor word.

3.9.3 How Is Extended Memory Support Implemented?

Extended memory support is implemented through hardware and software.

Hardware Software
1. Memory management unit 1. XM monitor and handlers

2. User Data Structures

a. Window Definition
Block

b. Region Definition
Block

3. Programmed Requests

a. .CRAW
b. .ELAW
c. .CRRG
d. .ELRG
e. .MAP
f. .UNMAP
g. .GMCX

3.9.4 How To Use Extended Memory Programmed Requests

This section briefly outlines the various steps involved in using the
programmed requests and macros to set up extended memory.

1. Create a region definition block by invoking the
macro .RDBBK, or define parameters and set up a region
definition block by invoking the macro .RDBDF.

EXTENDED MEMORY

Create the necessary regions in extended memory by executing
the .CRRG request for each region. A region is eliminated by
the .ELRG request.

Create a window definition block by invoking the
macro .WDBBK, or define parameters and set up a window
definition block by invoking the macro .WDBDF.

For each window to be created, move the region 1ID (R.GID,
returned by the monitor from .CRRG) from the region
definition block into the window definition block. (Move it
to W.NRID). This procedure links the window and the region
together, but does not map the window to the region.

Create the necessary windows in the wvirtual address space,
0-28K, by executing the .CRAW request for each window to be
created. A window is eliminated by the .ELAW request.

Map the window to the desired region by executing the .CRAW
or .MAP request. A window is unmapped by the .UNMAP request
or implicitly unmapped by another .MAP request.

3.9.5 Operational Characteristics of Extended Memory Support

1.

The two types of user programs are virtual and privileged.
a. Virtual provides more address space for mapping to

extended memory. It is selected by setting a bit of the
JSW before program execution.

b. Privileged is the default mapping that is compatible with
SJ and FB monitors. 1In this mapping arrangement, the low
28K words of memory and the I/0 page are mapped to
simulate the non-extended memory environment.

The two operating modes are kernel and user.

a. RMON and the USR run in kernel mode.

b. KMON and user jobs run in user mode.

CHAPTER 4

SYSTEM SUBROUTINE LIBRARY

4.1 INTRODUCTION

The RT-11 FORTRAN system subroutines are a collection of
FORTRAN-callable routines that allow a FORTRAN user to utilize various
features of RT-11 foreground/background (FB) and single-job (SJ)
monitors. There are no FORTRAN routines to manipulate extended memory
under the extended memory (XM) monitor. SYSF4 also provides utility
functions, a complete character string manipulation package, and a
two-word integer support. This collection of routines 1is usually
placed 1in a default system library, which is an object module library
file called SYSLIB.OBJ. This library file is the default library that
the 1linker uses to resolve undefined globals and is resident on the
system device (SY:). The concatenated set of FORTRAN-callable
routines 1is in a file called SYSF4.0BJ. Section 4.1.5 describes how
to make these routines into a library.

The user of SYSF4 should be familiar with Chapter 2 of this manual.
Chapter 4 assumes that FORTRAN users are familiar with the PDP-11

FORTRAN Language Reference Manual and the RT-11/RSTS/E FORTRAN IV
User's Guide.

The following are some of the functions provided by SYSF4:

e Complete RT-11 I1/0 facilities, including synchronous,
asynchronous, and event-driven modes of operation. FORTRAN
subroutines can be activated upon completion of an
input/output operation.

e Timea scheduling of asynchronous subjobs (completion
routines). This feature 1is standard in FB and XM, and
optional in the SJ monitor.

e Complete facilities for interjob communication between
foreground and background jobs (FB and XM only).

® FORTRAN interrupt service routines.

e Complete timer support facilities, including timed suspension
of execution (FB and XM only), conversion of different time
formats, and time of day information. These timer facilities
support either 50- or 60-cycle clocks.

e All auxiliary input/output functions provided by RT-11,
including the capabilities of opening, <closing, renaming,
creating, and deleting files from any device.

e All monitor-level informational functions, such as job
partition parameters, device statistics, and input/output
channel statistics.,

® Access to the RT-11 Command String Interpreter (CSI) for
accepting and parsing standard RT-11 command strings.

e A character string manipulation package supporting
variable-length character strings.

e INTEGER*4 support routines that allow two-word integer
computations.

SYSTEM SUBROUTINE LIBRARY

SYSF4 allows the FORTRAN user to write almost all application programs
completely in FORTRAN with no assembly language coding. Assembly
language programs can also utilize SYSF4 routines (see Section 4.1.3).

4.1.1 Conventions and Restrictions

In general, the SYSF4 routines were written for use with RT-11 V2 or
later and FORTRAN IV V1B or later versions. The use of this SYSF4

package with prior versions of RT-11 or FORTRAN leads to unpredictable
results.

Programs using IPEEK, IPOKE, IPEEKB, IPOKEB, and/or 1ISPY to access
FORTRAN, monitor, hardware, or other system specific addresses are not
guaranteed to run under future releases or on different
configurations. Suitable care should be taken with this type of
coding to document precisely the use of these access functions and to
check a referenced location's usage against the current documentation.

The following must be considered when coding a FORTRAN program that
uses SYSF4.

1. Vvarious functions in the SYSF4 package return values that are
of type integer, real, and double precision. If the user
specifies an IMPLICIT statement that changes the defaults for
external function typing, he must explicitly declare the type
of those SYSF4 functions that return integer or real results.
Double precision functions must always be declared to be type
DOUBLE PRECISION (or REAL*8). Failure to observe this
requirement leads to unpredictable results.

2. All names of subprograms external to the routine being coded
that are being passed to scheduling calls (such as ISCHED,
ITIMER, IREADF, etc.) must be specified in an EXTERNAL
statement in the FORTRAN program unit issuing the call.

3. Certain arguments (noted as such in the individual routine
descriptions) to SYSF4 calls must be located in such a manner
as to prohibit the RT-11 USR (User Service Routine) from
swapping over them at execution time. If the section OTSS1I
is not 2K words in length, a program using SYSF4 calls can
malfunction because the USR can swap over data to be passed
to the USR. This should be rare, but if it occurs, making
the USR resident through a SET USR NOSWAP command before
starting the job or using the linker's /BOUNDARY option to
have OTS$0 start at 11000 (octal) eliminates the problem.

FORTRAN IV version 2 uses .PSECTs to collect code and data
into appropriate areas of memory. If RT-11 USR is needed and
is not resident, it swaps over a FORTRAN program starting at
the symbol OTS$I for 2K words of memory.

4. Quoted-string literals are useful as arguments of calls to
routines in the SYSF4 package, notably the character string
routines. These 1literals are allowed in subroutine and
function calls.

5. Certain restrictions apply to completion or interrupt
routines; see Section 4.2.1 for these restrictions.

SYSTEM SUBROUTINE LIBRARY

4.1.2 Calling SYSF4 Subprograms
SYSF4 subprograms are called in the same manner as user-written
subroutines. SYSF4 includes both FUNCTION subprograms and SUBROUTINE

subprograms. FUNCTION subprograms receive control by means of a
function reference, as:

i = function name ([arguments])

SUBROUTINE subprograms are invoked by means of a CALL statement; that
is,

CALL subroutine name [(arguments)]

All routines in SYSF4 can be called as FUNCTION subprograms 1if the
return value 1is desired, or as SUBROUTINE subprograms if no return
value is desired. For example, the LOCK subroutine can be referenced
as either:

CALL LOCK

or
I = LOCK()

Note that routines that do not explicitly return function results
produce meaningless values 1if they are referenced as functions. 1In

the following descriptions, the more common usage (function or
subroutine) is shown.

4.1.3 Using SYSF4 with MACRO

The calling sequence 1is standard for all subroutines, including
user-written FORTRAN subprograms and assembly language subprograms.
SYSF4 routines can be used with MACRO programs by passing control to
the SYSF4 routine with the following instruction:

JSR PC,routine

Register five points to an argument list having the following format:

R5—— | undefined # of arguments

address of arg. #1

address of arg. #2

address of arg. #n

SYSTEM SUBROUTINE LIBRARY

Control is returned to the calling program by use of the instruction:
RTS PC

The following is an example of calling a SYSF4 function from an
assembly language routine.

.GLOBL JMUL ;GLOBAL FOR JMUL
MOV #LIST,RS ;i POINT R5 TO ARG LIST
JSR PC,JMUL ;s CALL JMUL
CMP #-2,R0 ;CHECK FOR OVERFLOW
BEQ OVRFL i BRANCH IF ERROR
LIST: .WORD 3 ;ARG LIST,3 ARGS
.WORD OPRI1 ;ADDR OF 1ST ARG
.WORD OPR2 ;ADDR OF 2ND ARG
.WORD RESULT ;ADDR OF 3RD ARG
OPR1: .WORD 100 ; LOW-ORDER VALUE OF 1ST ARG
.WORD 0 ;HIGH-ORDER VALUE OF 1ST ARG
OPR2: .WORD 10 ; LOW-ORDER VALUE OF 2ND ARG
.WORD 10 ; HIGH-ORDER VALUE OF 2ND ARG
RESULT: .BLKW 2 :2-WORD RESULT (LOW ORDER, HIGH ORDER)
.END

The following routines can be used only with FORTRAN:

GETSTR
IASIGN
ICDFN
IFETCH
IFREEC
IGETC
IGETSP
ILUN
INTSET
IQSET
IRCVDF
IREADF
ISCHED
ISDATF
ISPFNF
ITIMER
IWRITF
PUTSTR
SECNDS

User-written assembly language programs that call SYSF4 subprograms
must preserve any pertinent registers before calling the SYSF4 routine
and restore the registers, if necessary, upon return.

Function subprograms return a single result in the registers. The
register assignments for returning the different variable types are:

Integer, Logical functions - result in RO

Real functions - high-order result in RO,
low-order result in Rl

4-4

SYSTEM SUBROUTINE LIBRARY

Double Precision functions - result in RO-R3, lowest order result
in R3

Complex functions - high-order real result in RO,
low-order real result in R1,
high-order imaginary result in R2,
low-order imaginary result in R3

User-written assembly language routines that interface to the FORTRAN
Object Time System (OTS) must be aware of the location of the RT-11
USR (User Service Routine). If a user routine requests a USR function
(such as IENTER or LOOKUP), or if the USR is invoked by the FORTRAN
OTS, the USR is swapped into memory if it is nonresident. The FORTRAN
OTS 1is designed so that the USR can swap over it. User routines must
be written to allow the USR to swap over them or must be located
outside the region of memory into which the USR swaps. User interrupt
service routines and completion routines, because of their
asynchronous nature, must be further restricted to be located where
the USR will not swap. The USR, if in a swapping state, will swap at
the address specified in location 46 of the system communication area.
If location 46 is 0, the USR will swap at the default USR swap
location (shown in Figure 1-1). The USR occupies 2K words. Interrupt
and completion routines (and their data areas) must not be located in
this area. The best way to accomplish this is to examine the link
map, determine whether the USR will swap over an assembly language or
FORTRAN asynchronous routine, and, if so, change the order of object
modules and libraries as specified to the linker. Continue this
process until a suitable arrangement is obtained.

The order in which program sections are allocated in the executable
program is controlled by the order in which they are first presented
to the LINK utility. Applications that are sensitive to this ordering
typically separate those sections that contain read-only information

(such as executable code and pure data) from impure sections
containing variables.

The main program unit of a FORTRAN program (normally the first object
program in sequence presented to LINK) declares the following PSECT
ordering:

Section Name Attributes

OTSS1I RW, I, LCL, REL, CON
OTSSP RW, D, GBL, REL, OVR
SYSS1I RW, I, LCL, REL, CON
USERSI RW, I, LCL, REL, CON
S$CODE RW, I, LCL, REL, CON
OTSS$O RW, I, LCL, REL, CON
SYSS$SO RW, I, LCL, REL, CON
SDATAP RW, D, LCL, REL, CON
OTS$D RW, D, LCL, REL, CON
OTSS$S RW, D, LCL, REL, CON
SYSS$S RW, D, LCL, REL, CON
SDATA RW, D, LCL, REL, CON
USERS$D RW, D, LCL, REL, CON
.$88S. RW, D, GBL, REL, OVR
Other COMMON Blocks RW, D, GBL, REL, OVR

The User Service Routine (USR) can swap over pure code, but must not
be 1loaded over constants or impure data that can be passed as
arguments to it.

SYSTEM SUBROUTINE LIBRARY

The above ordering collects all pure sections before impure data in
memory. The USR can safely swap over sections OTSSSI, OTSP, SYSSI,
USERS$SI, and S$CODE.

Assembly-language routines used in applications sensitive to PSECT
ordering should use the same program sections as output by the
compiler for this purpose. This is, the programmer should place pure
code and read-only data in section USER$I, and all impure storage in
section USER$D. This ensures that the assembly-language routines will
participate in the separation of code and data.

Note that the ordering of PSECTs in an overlay program follows the
guidelines herein for each overlay segment (that is, the root segment
will contain pure sections followed by impure, and each overlay
segment will have a similar separation of pure and impure internal to
its structure).

See the RT-11/RSTS/E FORTRAN IV User's Guide for more information.

To remove these restrictions, the user must make the USR resident
either by specifying the /NOSWAP option to the FORTRAN command (when
compiling a program to be run in the background of FB or XM, or under

S§J) or by issuing the SET USR NOSWAP command before executing the
program.

4.1.4 Running a FORTRAN Program in the Foreground
The FRUN monitor command must be modified to include various SYSF4
functions. The following formula allocates the needed space when
running a FORTRAN program as a foreground job.

x = [1/2[44@+(33*N)+(R-136)+A*512)]]

The variables are defined as follows:

A = The number of files open at one time. If double buffering
is used, A should be multiplied by 2.

N = The number of channels (logical unit numbers).

R = Maximum record length. The default is 136 characters.

This formula must be modified for SYSF4 functions as follows:

The IQSET function requires the formula to include additional space
for queue elements (gleng) to be added to the queue:

X = [1/2[440+(33*N)+(R-l36)+A*512)]]+[10*q1eng]

The ICDFN function requires the formula to include additional space
for the integer number of channels (num) to be allocated.

X = [1/2[440+(33*N)+(R-136)+A*512)]]+[6*num]

The INTSET function requires the formula to include additional space
tor the number of INTSET calls (INTSET) issued in the program.

X = [1/2[440+(33*N)+(R-136)+A*512]]+ [25*INTSET]

SYSTEM SUBROUTINE LIBRARY

Any SYSF4 calls, including INTSET, that invoke completion routines
must include 64 (decimal) words plus the number of words needed to
allocate the second record buffer (default is 68 (decimal) words). The
length of the record buffer is controlled by the /R option to the
FORTRAN compiler. If the /R option is not used, the allocation in the
formula must be 136 (decimal) words.

X = [1/2[440+(33*N)+(R-136)+A*512]]+([64+R/2]

If the /N option does not allocate enough space in the foreground on
the 1initial call to a completion routine, the following message
appears:

2ERR 0, NON-FORTRAN ERROR CALL

This message also appears if there is not enough free memory for the
background job or if a completion routine in the single-job monitor is
activated during another completion routine. 1In the latter case, the

job aborts. The FB monitor should be wused for multiple active
completion routines.

4.1.5 Linking with SYSF4
SYSF4 is provided on the distribution media as a file of concatenated
object modules (SYSF4.0BJ). If this file is linked directly with the
FORTRAN program, all SYSF4 modules are included whether they are wused
or not. For example:

.LINK PROG,SYSF4

A library can be created by using the 1librarian to transform SYSF4
into a library file (SYSLIB.OBJ) as follows:

.LIBRARY/CREATE SYSLIB SYSF4

Normally the default system library file (SYSLIB.OBJ) also includes
the appropriate FORTRAN runtime system routine.

When a library is used, only the modules called are 1linked with the
program. For example:

.LINK PROG

To add the SYSF4 modules to the default 1library SYSLIB.OBJ, the
following command should be used:

.LIBRARY/INSERT SYSLIB SYSF4

The following example links the object module EXAMPL.OBJ into a single
memory image file EXAMPL.SAV and produces a load map file on LP:. The
default system library (SYSLIB.OBJ), which contains the FORTRAN OTS
routine, is searched for along with any routines that are not found in
other object modules.

.LINK/MAP EXAMPL

SYSTEM SUBROUTINE LIBRARY

4.2 TYPES OF SYSF4 SERVICES

Ten types of services are available to the user through SYSF4. These

are:

File-oriented operations

Data transfer operations

Channel-oriented operations

Device and file specifications

Timer support operations

RT-11 service operations

INTEGER*4 support functions

Character string functions

Radix-50 conversion operations
. Miscellaneous services

HWOOYOUL & WN K

Oe o o o

Table 4-1 alphabetically summarizes the SYSF4 subprograms in each of

these categories. Those marked with an asterisk (*)

in a foreground/background environment, under either
monitor.

Table 4-1
Summary of SYSF4 Subprograms

are allowed only
the FB or XM

Function Section Purpose
Call

File-Oriented Operations

CLOSEC 4.3.3 Closes the specified channel.

IDELET 4.3.20 Deletes a file from the specified device.
IENTER 4.3.23 Creates a new file for output,.

IRENAM 4.3.41 Changes the name of the indicated file to

a new name.

LOOKUP 4.3.70 Opens an existing file for

input and/or

output via the specified channel.

Data Transfer Functions

GTLIN 4.3.11 Transfers a line of input from the console

terminal or indirect file
the user program.

(if active) to

*IRCVD 4.3.39 Receives data. Allows a job to read mes-

*TIRCVDC sages or data sent by another job in an FB

*IRCVDF environment. The four modes correspond to

*IRCVDW the IREAD, IREADC, IREADF, and IREADW
modes.

* FB and XM monitors only.

(continued on next page)

4-8

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)
Summary of SYSF4 Subprograms

Function Section Purpose
Call

Data Transfer Functions (cont.)

IREAD 4.3.40 Transfers data via the specified channel
to a memory buffer and returns control to
the user program when the transfer request
is entered in the I/O queue. No special
action is taken upon completion of I/O.

IREADC 4.3.40 Transfers data via the specified channel
to a memory buffer and returns control to
the user program when the transfer request
is entered in the 1I/0 Qqueue. Upon
completion of the read, control transfers
to the assembly language routine specified
in the IREADC function call.

IREADF 4.3.40 Transfers data via the specified channel
to a memory buffer and returns control to
the user program when the transfer request
is entered in the I/0O queue. Upon
completion of the read, control transfers
to the FORTRAN subroutine specified in the
IREADF function call.

IREADW 4.3.40 Transfers data via the specified channel
to a memory buffer and returns control to
the program only after the transfer is
complete.

*ISDAT 4.3.45 Allows the user to send messages or data

*ISDATC to the other job 1in an FB environment.

*ISDATF The four modes correspond to the IWRITE,

*ISDATW IWRITC, IWRITF, and IWRITW modes.

ITTINR 4.3.51 Inputs one character from the console
keyboard.

ITTOUR 4.3.52 Transfers one character to the console
terminal.

IWAIT 4.3.55 Waits for completion of all I/O on a
specified channel. (Commonly used with

the IREAD and IWRITE functions.)

IWRITC 4.3.56 Transfers data via the specified channel
to a device and returns control to the
user program when the transfer request is
entered in the I/0 queue. Upon completion
of the write, control transfers to the
assembly language routine specified in the
IWRITC function call.

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)
Summary of SYSF4 Subprograms

Function Section Purpose
Call

Data Transfer Functions (cont.)

IWRITE 4.3.56 Transfers data via the specified channel
to a device and returns control to the
user program when the transfer request is
entered in the 1I1/0 gueue. No special
action is taken wupon completion of the
1/0.

IWRITF 4.3.56 Transfers data via the specified channel
to a device and returns control to the
user program when the transfer request is
entered in the I/0 queue. Upon completion
of the write, control transfers to the
FORTRAN subroutine specified in the IWRITF
function call.

IWRITW 4.3.56 Transfers data via the specified channel
to a device and returns control to the
user program only after the transfer is
complete.

*MTATCH 4.3.72 Attaches a particular terminal in a
multi-terminal environment

*MTDTCH 4.3.73 Detaches a particular terminal in a
multi-terminal environment

*MTGET 4.3.74 Provides information about a particular
terminal in a multi-terminal system.

*MTIN 4.3.75 Transfers characters from a specific
terminal to the user program in a
multi-terminal system.

*MTOUT 4.3.76 Transfers characters to a specific
terminal in a multi-terminal system.

*MTPRNT 4.3.77 Prints a message to a specific terminal in
a multi-terminal system.

*MTRCTO 4.3.78 Enables output to terminal by cancelling
the effect of a previously typed CTRL/O.

*MTSET 4.3.79 Sets terminal and 1line characteristics in
a multi-terminal system.

*MWAIT 4.3.80 Waits for messages to be processed.

PRINT 4.3.81 Outputs an ASCII string to the console
terminal.

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)
Summary of SYSF4 Subprograms

Function Section Purpose
Call

Channel-Oriented Operations

ICDFN 4.3.15 Defines additional I/O channels.

*ICHCPY 4.3.16 Allows access to files currently open in
the other job's environment.

*ICSTAT 4.3.19 Returns the status of a specified channel.

IFREEC 4.3.25 Returns the specified RT-11 channel to the

available pool of channels for the FORTRAN
I1/0 system.

IGETC 4.3.26 Allocates an RT-11 channel and marks it in
use to the FORTRAN I/0 system.

ILUN 4.3.29 Returns the RT-11 channel number with
which a FORTRAN logical unit is
associated.

IREOPN 4.3.42 Restores the parameters stored via an
ISAVES function and reopens the channel
for 1/0.

ISAVES 4.3.43 Stores five words of channel status

information into a user-specified array.

PURGE 4.3.82 Deactivates a channel.

Device and File Specifications

IASIGN 4.3.14 Sets information in the FORTRAN logical
unit table.

ICSsI 4.3.18 Calls the RT-11 CSI in special mode to
decode file specifications and options.

Timer Support Operations

CVTTIM 4.3.5 Converts a two-word internal format time
to hours, minutes, seconds, and ticks.

GTIM 4.3.9 Gets time of day.

ICMKT 4.3.17 Cancels an unexpired ISCHED, ITIMER, or

MRKT request. (Valid for SJ monitors with
timer support, a SYSGEN option.)

* FB and XM monitors only.

(continued on next page)

SYSTEM SUBROUTINE LIBRARY

Table 4-1 (cont.)
Summary of SYSF4 Subprograms

Function Section Purpose
Call

Timer Support Operations (cont.)

ISCHED 4.3.44 Schedules the specified FORTRAN subroutine
to be entered at the specified time of day
as an asynchronous completion routine.
(Vvalid for SJ monitors with timer support,
a SYSGEN option.)

ISLEEP 4.3.46 Suspends main program execution of the
running job for a specified amount of
time; completion routines continue to
run. (Valid for SJ monitors with timer
support, a SYSGEN option.)

ITIMER 4.3.49 Schedules the specified FORTRAN subroutine
to be entered as an asynchronous
completion routine when the time interval

specified has elapsed. (valid for sJ
monitors with timer support, a SYSGEN
option.)

*ITWAIT 4.3.53 Suspends the running job for a specified

amount of time; completion routines
continue to run.

*IUNTIL 4.3.54 Suspends the main program execution of the
running job until a specified time of day;
completion routines continue to run.

JTIME 4.3.67 Converts hours, minutes, seconds, and
ticks into 2-word internal format time.

MRKT 4.3.71 Marks time; that is, schedules an
assembly language routine to be activated
as an asynchronous completion routine
after a specified interval. (valid for SJ
monitors with timer support, a SYSGEN
option.)

SECNDS 4.3.93 Returns the current system time in seconds
past midnight minus the value of a
specified argument.

TIMASC 4.3.98 Converts a specified two-word internal
format time into an eight-character ASCII
string.

TIME 4.3.99 Returns the current system time of day as

an 8-character ASCII string.

* FB and XM monitors only.

(continued on next page)

