The user should also take care

PROGRAMMED REQUESTS

that

the USR is never swapped over any of

the following
stack;

calls

device
routines being used when the USR

areas: the program
any parameter block for
to the USR; any I1/0 buffers,
handlers, or completion
is

called.

For example:

«TITLE USK, MAC

JTHIS 1S AN EXAMPLE OF THE wAY A BACKGRCUND PKOGRAM CAN AVOID
JUNNECESSARKY USR SwaPPING,

JMCALL LSETTUP, ,EXIT,, GvAL
USRLCC 3 2oo pPCINTEX TO USR LOCATION IS
JAT 266 BYTES INTOU RMQON,
START
JLvag sAREA,mUS®OC JRe => USK
ST c(hd) $PCINT JUST BELOUW
(1 Roy 0850 JOCES USR SnAP QVER US?
-LDY 1% iNOy 0K
#Cv 8e2,KY sYES, USR MUST SwaAP
183 SETTULP JASK FOR MEMORY UP TQO USR
mlv A, HILIm gJR@ ® NIGH LIMIT OF MEMORY
JACTUALLY GRANTED BY MONITOR,
JEXIT
HILIPE ,aukD o $CONTAINS HI LIMIT OF MEMORY
AREA; JBLuw 2 $EMT ARGUMENT BLOCK
oENC START

2.2.6 Offsget Words

There are several words that always have fixed positions
start of the resident monitor.
programs to be able to access these words.

the
.GVAL programmed request
.GVAL #area,#offse

Here, area is a two-word
following list.

OFFSET (Bytes)

266

270

relative to
It is often advantageous for user
This is done wusing the

in the following form:

argument block and offse is a number from the

Contents

Start of normal USR area. This is where the
USR resides when it is called into memory and
location 46 is 0. It is useful to be able to
perform a .SETTOP in a background job so that
the USR does not swap, and once called in,
remains resident. (An example is in Section
2.2.5.)

Address of
The exit
management
handlers
complete.
RT-11 must

I/0 exit routine for all devices.

routine is an internal queue
routine through which all device
exit once the 1I/0 transfer is
Any new device handlers added to
also use this exit location.

OFFSET (Bytes)

272

275

276

277

300

PROGRAMMED REQUESTS

Contents

Special device error word. This word is used
by non-RT-11 file structured devices (such as
MT and CT) to report errors to the monitor.

Unit number of system device (device from
which system was last bootstrapped).

Monitor version number. The user can always
access the version number to determine if the
most recent monitor is in use. For RT-11
Version 3B, this value is 3.

Monitor release level. This number
identifies the release level of the monitor
version specified in byte 276. For version

3B, the value is 2.

Configuration word. This is a string of 16
bits that indicates information about either
the hardware configuration of the system or a
software condition. Another configuration
word is available at offset 370 that contains
additional data. The bits and their meanings
are:

Bit # Meaning
0 0 = SJ Monitor
1 = FB Monitor if bit 12 is not

set, XM monitor if bit 12 is
set

2 1 = graphics display hardware
exists (VT1ll or VSé60)
3 1 = RT-11 BATCH is in control
of the background
5 0 = 60-cycle clock
1 = 50-cycle clock
6 1 = FP1l floating-point
hardware exists
7 0 = No foreground job is in memory
1l = Foreground job is in memory
8 1l = User is linked to the graphics
scroller
9 1 = USR is permanently resident
(via a SET USR NOSWAP -
USR is always resident in XM)
11 1l = Processor is a PDP-11/03 (that
is, there is no program status
word on this processor)
12 1 = a mapped system running under
XM monitor
13 1l = The system clock has a status
register
14 1l = KWll-P clock exists and can be

used by programs

15 1 = either an L clock or a P clock
(depending on the system
generation procedure used) is
present

The other bits are reserved for future use
and should not be used by user programs.

2-14

OFFSET (Bytes)

304-313

314

324

354

360

362

366

370

PROGRAMMED REQUESTS

Contents

These locations contain the addresses of the
console terminal control and status registers
(but they are not used when the
multi-terminal option is present). The order
is:

304 Keyboard status
306 Keyboard buffer
310 Printer status
312 Printer buffer

These locations can be changed, for example,
to reflect a second terminal; thus RT-11 can
be made to run on any terminal connected to
the machine through the DL1ll1 terminal
interface.

The maximum file size allowed in a 0 1length
.ENTER. This can be adjusted by the user
program or by using the PATCH program to be
any reasonable value. The default value is
177777 (octal) blocks, allowing an
essentially unlimited file size.

Address of .SYNCH entry. User interrupt
routines can enter the monitor through this
address to synchronize with the job they are
servicing.

Address of VT1l or VS60 display processor
display stop interrupt vector.

Move to PS routine. The routine is called by
the .MTPS macro to do processor independent
moves to the program status word.

Move from PS routine. The routine is called
by the .MFPS macro to do processor
independent moves from the program status
word.

Indirect file and command language state
word.

Extension configuration word. This 1is a
string of 16 bits used to indicate the
presence of an additional set of hardware
options on the system. The bits and their
meanings are:

Bit # Meaning

cache memory is present

parity memory is present
readable switch register is
present

writeable console display
register is present

= EIS option is present

N O
(-

w
—
"

—
|

PROGRAMMED REQUESTS

OFFSET (Bytes) Contents
Bit # Meaning
9 0 = VT1l display hardware exists if

bit 2 at offset 300 is set

1 = VS60 display hardware exists if
bit 2 at offset 300 is set
14 1 = processor is PDP-11/70
15 1l = processor is PDP-11/60

The other bits are reserved for future use
and should not be used by user programs.

372 SYSGEN options word. The bit pattern
indicates important SYSGEN options and must
not be modified by user programs or patches.
The bits and their meanings are:

Bit # Meaning
0 1 = error logging option is present
1 1 = memory management option is
present
2 1 = device I/0 time-out option is
present
9 1l = memory parity option is present
10 1 = SJ mark time option is present
11-12 00 = no escape sequences recognized
01 = option to recognize DIGITAL
escape sequences is present
10 = option to recognize ANSI escape
sequences is present
13 1 = multi-terminal option is present

The other bits are reserved for future use
and should not be used by user programs.

374 Size of USR in bytes. Programs should use
this information to dynamically determine the
size of the region needed to swap the USR.

377 Depth of nesting of indirect files (default
is 3). This value must be referred to as a
byte. It can be patched or set by programs
to change the nesting depth of indirect

files.
400 Internal offset for use by BATCH only.
402 Byte offset to fork request processor from

start of resident monitor (contents of 54).

2.2.7 File Structure

RT-11 uses a contiguous file structure. This type of structure
requires that every file on a device be made up of a contiguous group
of physical blocks. Thus, a file that is 19 blocks long occupies 19
contiguous blocks on the device.

2-16

PROGRAMMED REQUESTS

A contiguous area on a device can be in one of the following
categories:

1. Permanent file. This is a file that has been created with
.ENTER and then .CLOSEd. Any named files that appear in a
directory listing are permanent files.

2. Tentative file. Any file that has been created with .ENTER
but not .CLOSEd is a tentative file entry. When the .CLOSE
request is given, the tentative entry becomes a permanent
file. If a permanent file already exists under the same
name, the old file is deleted when the tentative file is
.CLOSEAQd. If a .CLOSE is never given, the tentative file is
treated like an empty entry. The tentative file is deleted
when a new tentative file with the same name is created.

3. Empty entry. When disk space is unused or a permanent file
is deleted, an empty entry is created. Empty entries appear
in a full directory listing as <UNUSED> n, where n 1is the
decimal block length of the empty area.

Since a contiguous structure does not automatically consolidate unused
disk space, a device can eventually become fragmented with many
scattered empty entries. RT-11 has a SQUEEZE command to collect all
empty areas and create a single empty entry at the end of a device.

2.2.8 Completion Routines

Completion routines are user-written routines that are entered
following the completion of some external operation. A completion
routine can be entered after an I/0 data transfer, after some number
of clock ticks or after a user-specified interrupt. On entry to an
I/0 completion routine, RO contains the contents of the channel status
word for the operation and Rl contains the octal channel number of the
operation. The carry bit is not significant.

Completion routines are handled differently in the SJ and the FB or XM
versions of RT-11. 1In the SJ version, completion routines are totally
asynchronous and can interrupt one another. 1In FB and XM, completion
routines do not interrupt each other. Instead they are queued and
made to wait until the correct job is running. For example, if a
foreground job is running and an I/0 transfer initiated by a
background job completes with a specified completion routine, the
background routine is queued and does not execute until the foreground
gives up control of the system. If the foreground is running and a
foreground I/0 transfer completes and wants a completion routine, that
routine is entered immediately if the foreground 1is not already
executing a completion routine. If it is in a completion routine,
that routine continues to termination, at which point any other
completion routines are entered in a first in/first out order. 1If the
background is running and a foreground I1/0 transfer completes with a
specified completion routine, the background is suspended and the
foreground routine is entered immediately.

PROGRAMMED REQUESTS

The restrictions that must be observed when writing completion
routines are:

l. Completion functions cannot issue a request that would cause
the USR to be swapped in. They are primarily used for
issuing .READ and .WRITE requests, not for opening or closing
files, etc. A fatal monitor error is generated if the USR is
called from a completion routine.

2. Completion routines should never reside in the memory space
that is wused for the USR, since the USR can be interrupted
when I/0 terminates and the completion routine is entered.
If the USR has overlaid the routine, control passes to a
random place in the USR, with a HALT or error trap the likely
result.

3. The routine must be exited with an RTS PC (because it is
called from the monitor with a JSR PC,ADDR, where ADDR is the
user-supplied entry point address).

4. 1If a completion routine uses registers other than RO or R1,
it must save them upon entry and restore them before exiting.
Other requests cannot transfer data between the mainline
program and the completion routine.

5. In XM, completion routines must remain mapped while the
request is active and the routine can be called.

2.2.9 Using the System Macro Library

User programs for RT-11 should always be written using the macros
provided in the system macro library (SYSMAC.MAC), supplied with
RT-11. This ensures source level compatibility among all user
programs and allows easy modification by redefining a macro. A
listing of SYSMAC.MAC appears in Appendix B.

Suggestions for writing foreground programs are in Chapter 1 (FB
Programming and Device Handlers). Chapter 1 should be read in
conjunction with Chapter 2 before coding FB programs.

2.2.10 Error Reporting

In processing a programmed request, the monitor can detect an error
condition that must be reported to the user program. RT-11 programmed
requests use three methods of reporting these errors: the carry (C)
bit, the error byte (byte 52 in the system communication area), and
the monitor error message. The carry bit is returned clear after
normal termination of a programmed request, and set after an abnormal
termination. Almost all requests should be followed by a BCS or BCC
instruction to detect a possible error. When the carry bit is set,
the error byte wusually contains additional information about the
error. The meanings of values 1in the error byte are described
individually for each request. 1In most cases, the user program should
test the error byte when the carry bit is set. The values contained
in the error byte are not significant when the «carry bit is clear.
Certain serious or non-recoverable error conditions cause a monitor
error message to be printed at the console terminal. A user-program
can use the .SERR programmed request to cause these errors to be
reported through the carry bit and the error byte, in which case the
error byte will contain a negative error code.

PROGRAMMED REQUESTS

2.3 TYPES OF PROGRAMMED REQUESTS

There are three types of services that the monitor makes available to
the user through programmed requests. These are:

1. Requests for file manipulation
2. Requests for data transfer
3. Requests for miscellaneous services

Table 2-1 summarizes the programmed requests in each of these
categories alphabetically. Some requests function only in a FB and XM
environment and are ignored under the SJ monitor. The EMT and
function code for each request (where applicable) are shown in octal.
It should be noted as a general rule that only six characters (such as
.CHCOP) are significant to the MACRO assembler. Longer forms are
shown for readability only.

Table 2-1
Summary of Programmed Requests

Mnemonic EMT Code Purpose

File Manipulation Requests

.CHCOPY* 375 13 Establishes a link and allows one
job to access another job's channel.

.CLOSE 374 6 Closes the specified channel.

.DELETE 375 0 Deletes the file from the specified
device.

.ENTER 375 2 Creates a new file for output.

.LOOKUP 375 1 Opens an existing file for input
and/or output via the specified
channel.

. PURGE 374 3 Clears out a channel.

.RENAME 375 4 Changes the name of the indicated

file to a new name. If this request
is attempted with magtape, the
handler returns an illegal operation
code.

.REOPEN 375 6 Restores the parameters stored via a
.SAVESTATUS request and reopens the
channel for 1/0.

.SAVESTATUS (375 5 Saves the status parameters of an
open file 1in user memory and frees
the channel for future use.

(continued on next page)

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose
Data Transfer Requests

-MTIN* 375 37 Operates as a .TTYIN for
multi-terminal configuration.

.MTOUT* 375 37 Operates as a .TTYOUT for
multi-terminal configuration.

-MTPRNT* 375 37 Operates as a .PRINT request for a
multi-terminal configuration.

.PRINT 351 -- Outputs an ASCII string terminated
by a 0 byte or a 200 byte.

.RCVD* 375 26 Receives data. Allows a job to read

.RCVDW* messages or data sent by another job

.RCVDC* in an FB environment. The three
modes correspond to the READ,
.READC, and .READW modes.

.READ 375 10 Transfers data on the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is entered
in the I/0 queue. No special action
is taken upon completion of I1/0.

.READC 375 10 Transfers data on the specified
channel to a memory buffer and
returns control to the user program
when the transfer request is entered
in the I1/0 queue. Upon completion
of the read, control transfers
asynchronously to the routine
specified in the .READC regquest.

. READW 375 10 Transfers data via the specified
channel to a memory buffer and
returns control to the user program
only after the transfer is complete.

.SDAT* 375 25 Allows the user to send messages or

. SDATC* data to the other job in an FB

. SDATW* environment. The three modes
correspond to the .WRITE, .WRITC, and
.WRITW modes.

.SPFUN 375 32 Performs special functions on magtape,
cassette, diskette and some disk
devices.

.TTYIN 340 -~ Transfers one character from the

.TTINR keyboard buffer to RO.

.TTYOUT 341 -- Transfers one character from RO to

.TTOUTR the terminal input buffer.

(continued on next page)

2-20 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic

EMT

Code

Purpose

.WRITE

+WRITC

<WRITW

375

375

375

11

11

11

Transfers data on the specified
channel to a device and returns
control to the user program when the
transfer request is entered in the I/0
queue. No special action is taken
upon completion of the I/0.

Transfers data on the specified
channel to a device and returns
control to the user program when the
transfer request is entered in the I/0
queue. Upon completion of the write,
control transfers asynchronously to
the routine specified in the .WRITC
request.

Transfers data on the specified
channel to a device and returns
control to the user program only after
the transfer is complete.

Miscellaneous Serv

ices

.CDFN

.CHAIN

.CRAW**
.CRRG**

.CMKT

.CNTXSwW*

.CSIGEN

375
374

375
375

375

375

344

.CSISPC

.CSTAT*

.DATE

.DEVICE*

.DSTATUS

345
375

374

375

342

15
10

36
36

23

33

27

12

14

Defines additional channels for I1/0.

Chains to another program (in the
background job only).

Creates a window in virtual memory.
Creates a region in extended memory.

Cancels an unexpired mark time
request.

Requests that the indicated memory
locations be part of the FB context
switch process.

Calls the Command String Interpreter
(CSI) in general mode.

Calls the CSI in special mode.

Returns the status of the channel
indicated.

Moves the current date information
into RO.

Allows the wuser to disable device
interrupts in FB upon program
termination.

Returns the status of a particular
device.

(continued on next page)

2-21 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose

.ELAW** 375 36 Cancels an address window in virtual
memory.

.ELRG** 375 36 Cancels an allocated region in
extended memory.

LEXIT 350 -- Exits the user program.

.FETCH 343 -- Loads device handlers into memory.

.GMCX** 375 36 Returns mapping status of a specified
window.

.GTIM 375 21 Gets time of day.

.GTJB 375 20 Gets parameters of the current job.

.GTLIN 345 -- Accepts an input line from either an
indirect file or from the console
terminal.

.GVAL 375 34 Returns monitor fixed offsets in a
pseudo-protected manner.

.HERR 374 5 Specifies termination of the 3job on
fatal errors.

.HRESET 357 -- Terminates I/O transfers and does a
.SRESET operation.

.INTEN | === -- Notifies the monitor that an interrupt
has occurred, requests system state
and sets the processor priority to the
correct value.

.LOCK 346 -- Makes the monitor User Service
Routines (USR) permanently resident
until .EXIT or .UNLOCK 1is executed.
The wuser program is swapped out, if
necessary.

.MAP* 375 36 Maps a virtual address window to
extended memory.

L.MFPS | === -- Reads the priority bits in the
processor status word (but does not
read the condition codes).

«MRKT 375 22 Marks time; that is, sets an
asynchronous routine to occur after a
specified interval.

.MTATCH* 375 37 Attaches a terminal for exclusive use
by the requesting job.

(continued on next page)

2-22 September 1978

PROGRAMMED REQUESTS

Table 2-1

(Cont.)

Summary of Programmed Requests

Mnemonic EMT Code Purpose

.MTDTCH* 375 37 Detaches a terminal from one job and
frees it to be used by other jobs.

«MTGET* 375 37 Returns status of specified terminal
to caller.

.MTSET* 375 37 Determines and modifies terminal
status in a multi-terminal
configuration.

.MTPS | === -- Sets the priority bits, condition
codes, and T bit in the processor
status word.

.MTRCTO* 375 37 Resets the CTRL/O flag for the
designated terminal.

<MWAIT* 374 11 Waits for messages to be processed.

.PROTECT* 375 31 Requests that vectors in the area from
0-476 be given exclusively to the
current job.

.QSET 353 -- Increases the size of the monitor I1/0
queue.

.RCTRLO 355 -- Enables output to the terminal.

.RELEAS 343 -- Removes device handlers from memory.

. RSUM* 374 2 Causes the main line of the job to be
resumed when it was suspended with
.SPND.

.SCCA 375 35 Enables intercept of CTRL/C commands.

.SERR 374 4 Inhibits most fatal errors from
aborting the current job.

.SETTOP 354 -- Specifies the highest memory 1location
to be used by the user program.

.SFPA 375 30 Sets user interrupt for floating point
processor exceptions.

.SPND* 374 1 Causes the running job to be
suspended.

.SRESET 352 -- Resets all channels and releases the
device handlers from memory.

.SYNCH [=== -- Enables user program to perform
monitor programmed requests from
within an interrupt service routine.

(continued on next page)

2-23 September 1978

PROGRAMMED REQUESTS

Table 2-1 (Cont.)
Summary of Programmed Requests

Mnemonic EMT Code Purpose

. TLOCK* 374 7 Indicates if the USR 1is currently

being used by another job and performs
a .LOCK if the USR is available.

.TRPSET 375 3 Sets a user intercept for traps to
locations 4 and 10.

.TWAIT* 375 24 Suspends the running job for a
specified amount of time.

.UNLOCK 347 -- Releases the USR if a .LOCK was done
and swaps in the user program, if
required.

.UNMAP* 375 36 Unmaps a virtual memory address
window.

.UNPROTECT* {374 31 Cancels the .PROTECT vector protection
request.

..V, fe== —- Provides compatibility with version 1
format.

V2.0 e - Provides compatibility with version 2
format.

.WAIT 374 0 Waits for completion of all I/O on a

specified channel.

*FB and XM monitors

**XM monitor only

Requests requiring the USR (as explained in Section 2.2.5) differ
between the SJ and FB monitors. Table 2-2 indicates which requests
require the USR to be in memory. The .CLOSE reguest on
non-file-structured devices (LP:, PC:, TT:, etc.) does not require the
USR under any monitor.

The USR is not reentrant and cannot be shared by concurrent jobs.
When the USR is in use by one job, another job requiring it must queue
up for it. This is particularly important for concurrent jobs when
devices such as magnetic tape or cassette are active.

For example, USR file operations on tape devices require a linear
search of the tape. When a background job is running the USR, the
foreground job is locked out until the tape operation is completed.
Since that can take considerable time, the programmer should be aware
of the problem. In the FB and XM monitors, the .TLOCK request (see

Section 2.4.56) can be used by a foreground job to check USR
availability.

2-24 September 1978

PROGRAMMED REQUESTS

Table 2-2
Requests Requiring the USR

Request SJ FB XM
.CDFN Yes* No No
.CHAIN No No No
.CHCOPY - No No
.CLOSE (see Note 1) Yes Yes Yes
.CMKT No No No
.CNTXSW - No No
.CRAW - - No
.CRRG - -— No
.CSIGEN Yes Yes Yes
.CSISPC Yes Yes Yes
.CSTAT - No No
.DATE No No No
.DELETE Yes Yes Yes
.DEVICE - No No
.DSTATUS Yes Yes Yes
.ELAW - - No
.ELRG - - No
. ENTER Yes Yes Yes
.EXIT Yes Yes Yes
.FETCH Yes Yes Yes
.GMCX - - No
.GTIM No No No
.GTJB -- No No
.GTLIN Yes* Yes Yes
.GVAL No No No
-HERR No No No
.HRESET Yes* No No
. INTEN No No No
.LOCK (see Note 2) Yes Yes Yes
. LOOKUP Yes Yes Yes
.MAP - - No
-MFPS No No No
«MRKT No No No
.MTATCH - No No
.MTDTCH - No No
.MTGET -— No No
+MTIN - No No
.MTOUT - No No
«MTPRNT - No No
.MTPS No No No
«MTRCTO - No No
«MTSET - No No
«MWAIT - No No
. PRINT No No No

* Those requests marked with an as
copy of the USR to be read in bef

executing such a request,
device even if there is a

Note 1:
Note 2:

Note 3:

terisk always require

ore they can be executed.
the USR must be read in from the
copy of the USR presently in memory.

Only if channel was opened with .ENTER.

Only if USR is in a swapping state.

Only 1f USR is not in use by the other job.

a

fresh
When
system

(continued on next page)

PROGRAMMED REQUESTS

Table 2-2 (Cont.)
Requests Requiring the USF

Request SJ FB XM
. PROTECT - No No
. PURGE No No No
.QSET Yes* Yes* Yes*
.RCTRLO No No No
.RCVD/.RCVDC/.RCVDW - No No
.READ/.READC/.READW No No No
.RELEAS Yes Yes Yes
. RENAME Yes Yes Yes
. REOPEN No No No
.RSUM/.SPND - No No
.SAVESTATUS No No No
.SCCA No No No
.SDAT/.SDATC/ .SDATW - No No
.SERR No No No
.SETTOP No No No
.SFPA No No No
.SPFUN No No No
.SRESET Yes* No No
.SYNCH No No No
.TLOCK (see Note 3) Yes Yes Yes
.TRPSET No No No
.TTINR/.TTYIN No No No
.TTOUTR/.TTYOUT No No No
. TWAIT - No No
. UNLOCK No No No
. UNMAP - -- No
. UNPROTECT -- No No
.WAIT No No No
.WRITE/.WRITC/ .WRITW No No No

* Those requests marked with an asterisk always require a
the USR to be read in before they can be executed.
executing such a request, the USR must be read in from the

device even if there is a copy of the USR presently in memory.

copy of

Note 1:
Note 2:

Note 3:

Only if channel was opened with .ENTER.

Only if USR is in a swapping state.

Only if USR is not in use by the other job.

2.3.1 System Macros

The following macros are included in the system macro library,
not programmed requests
instruction:

..V2,
..V1.

.

because they do not

generate

They can be used in the same manner as the other macro calls;
explanations follow.

2-26

fresh
When
system

but are

an

EMT

their

PROGRAMMED REQUESTS

Vi..z..v2..

2.3.1.1 ..vl../..v2..

Any version 1 and/or version 2 program that uses system macros must
specify the version format in which the macro calls are to be
expanded. Assembly errors at macro calls result if the proper version
designation is not made. In version 3B, ..Vl.. and ..v2.. are
unnecessary since the expansions are made automatically. The ..V1..
and ..v2.. macros are retained only for compatibility with earlier
systems.

The ..Vl.. macro call enables all macro expansions to occur in
Version 1 format.

Macro Call: .MCALL ..Vl1..
..V1..

This causes all macros in the program to be assembled in version 1
form and the symbol ...Vl to be set equal to 1. User programs should
not use the ...Vl symbol.

To cause all macro expansions to occur in version 2 format, the ..v2..
macro call is used.

Macro Call: .MCALL ..Vv2,.
..V2..

The ..V2.. macro causes the ...Vl symbol to equal 2. As with the V1
case, user programs should not use the ...V2 symbol.

Run-time or assembly errors can occur if both the ..vl.. and ..v2..
macro calls are used in a program.

All examples in this chapter illustrate the format for version 3 and
later systems.

NOTE

It is possible for user programs to
exist in which version 1 and version 2
or 3 macros are present. This is
allowable by invoking the ..Vl.. macro
and using those macros that have no
version 1 counterpart as if the ..V1..
macro had not been used.

This causes all macros that existed in
version 1 to assemble in version 1
format, -while those macros new to
version 2 or version 3 are correctly
generated as version 2 or version 3
macros. Note that in this case a macro
that existed in version 1 (such as
-READ) will expand in the version 1
format.

2-27 September 1978

PROGRAMMED REQUESTS

2.4 PROGRAMMED REQUEST USAGE

This section

describes

presents the programmed requests alphabetically and
one in detail. The following parameters are commonly

used as arguments in the various calls:

addr

area

blk

buf

cblk

chan

chrcnt

code

crtn

dblk

func

num

segnum

an address, the meaning of which depends on the
request being used.

a pointer to the EMT argument 1list (for those

requests that require a 1list) -- see Section
2.2.3.

a block number specifying the relative block in a
file where an I/0 transfer is to begin.

a buffer address specifying a memory location into
which or from which an 1I/0 transfer is to be
performed; this address has to be word-aligned,
i.e., an even address and not a byte or odd
address.

the address of the five-word block where channel
status information is stored.

a channel number in the range 0-377(octal).

a character count in the range 1-255 (decimal).

a flag used to indicate whether the <code in an
area form (EMT 375) of a programmed request is to

be set.

the entry point of a completion routine -~- see
Section 2.2.8.

the address of a four-word Radix-50 descriptor of
the file to be operated upon -- see Section 2.2.2.

a numerical code indicating the function to be
performed.

a number, the value of which depends on the
request.

file number -- for cassette operations if this
argument is blank, a value of 0 is assumed.

For magtape operation, it describes a file
sequence number that can have the following
values:

Value Meaning

0 For .LOOKUP, this value rewinds
the magtape and spaces forward
until the file name 1is found.
For .ENTER it rewinds the
magtape and spaces forward
until the file name is found or
until the logical end of tape
is detected. 1If the file name
is found, an error return is
taken.

2-28 September 1978

PROGRAMMED REQUESTS

n Wwhere n is any positive number .
This value positions the
magtape at file sequence number
n. 1f the file represented by
the FSN is greater than two
files away from the beginning
of tape, a rewind is performed.
If not, the tape is backspaced
to the beginning of the file.

value Meaning
-1 For .LOOKUP or .ENTER, this

value suppresses rewinding and
gearches for a file name from
the current tape position.
Note that if the position is
unknown, the handler executes a
positioning algorithm that
involves packspacing until an
EOF label is found. The user
should not use any other value
since all other negative values
are reserved for future use.

-2 For .ENTER, the tape is rewound
and spaces forward until the
file is found or end of tape is
detected. The file 1is then
entered causing a new end of
tape when the file is closed.

unit the logical unit number of a particular terminal
in a multi-terminal system.
wcnt a word count specifying the number of words to be
transferred to or from the buffer during an I1/0
operation.

The RT-11 MACRO assenbler supports keyword macro arguments. all of
the arguments described above can be encoded using their keyword form
(see the PDP-11 MACRO-11 Language Reference Manual for details).

A new argument code is included for all EMT 375 area versions of the
macros. 1t is used for explicit control in expanding an EMT
programmed request. In the 375 EMTs, the high byte of the area
(pointed to by RO) contains an identifying code for the reguest.
Normally, this byte is set if the macro invocation of the programmed
request specifies the area argument, and remains unaffected if the
programmed request omits the area argument. If the macro invocation
contains CODE=SET, the high byte of the first word of the area is
always be set to the appropriate code. This is true whether or not
area is specified.

1f CODE=NOSET is in the macro invocation, the high byte of the first
word of area remains unaffected. This is true whether or not area is
specified. The latter case can be used to avoid setting the code when
the programmed request is being set up. This might be done because it
is known to be set correctly from an earlier invocation of the request

using the same area, or because the code was statically set during the
assembly process.

Additional information concerning these parameters (and others not
defined here) is provided as necessary under each request.

2-29

PROGRAMMED REQUESTS

.CDFN

2.4.1 .CDFN

The .CDFN request redefines the number of 1,0 channels (see Section
2.2.1). Each job, whether foreground or background, is initially
provided with 16 (decimal) 1,0 channels, numbered 0-15. .CDFN allows
the number to be expanded to as many as 255 (decimal) channels

The space used to contain the new channels is taken from within the
user program. Each I/0 channel requires five words of memory.
Therefore, the user must allocate 5*n words of memory, where n is the
number of channels to be defined.

It is recommended that the .CDFN request be used at the beginning of a
program, before any I/0 operations have been initiated. 1f more than
one .CDFN request is used, the channel areas must either start at the
same location or not overlap at all. The two requests .SRESET and
-HRESET cause the user's channels to revert to the original 16
channels‘ defined at program initiation. Hence, any .CDFNs must be
reissued. after using .SRESET or .HRESET

Note that .CDFN defines new channels; the space for the previously
defined channels cannot be used. Thus, a .CDFN for 20 (decimal)
channels (while 16 original channels are defined) creates 20 new 1I/,0
channels; the space for the original 16 is unused, but the contents
of the old channel set are copied to the new channel set.

Note that if a pProgram is overlaid, channel 15 (decimal) is used by the
overlay handler and should not be modified. (Other channels can be
defined and used as usual.)

Macro Call: .CDFN area,addr,num

where: area is the address of a three-word EMT argument
block
addr is the address where the 1,0 channels begin
num is the number of I/0 channels to be created

Request Format:

RO -+ area: 15 0
addr
num
Errors:
Code Explanation
0 An attempt was made to define fewer channels than

already exist.

2-30

PROGRAMMED REQUESTS

Example:

+TITLE COPN,MAC
JTHIS pXAMDLE DEFINES 40 (DECIMAL) CMANNELS TO STARY
JAT LOCATION CWANL, AN ERROR OCCURS IF 40 OR MORE CHANNELS
JARE aLREADY DEFINED,
JMCALL JCOFN, ,PRINT, EX]T
START; LCOFN SROLISTIECHANLr wa¥,

8CS BADCOF
«PRINT 8MSGH
JEXIT
RADCDF, ,PRINY sM8G2
JEXTTY
“8G1e «ASCIZ /.COFPN O, K./
«EVEN
M8G2y ,ASCIZ /8aD ,COFN/
+EVEN
ROLIST, ,BLxw 3 JEMT ARGUMENT L IS8T
CHANLY JBLKW 40,8 JROOM FOR CHANNELS

+END STARY

.CHAIN

2.4.2 .CHAIN

This request allows a background program to pass control directly to
another background program without operator intervention. Since this
process can be repeated, a large "chain" of programs can be strung
together.

The area from locations 500-507 contains the device name and file name
(in Radix-50) to be chained to. The area from locations 510-777 is
used to pass information between the chained programs.

Macro Call: .CHAIN

Request Format:

Ro= [0 o]

1. No assumptions should be made concerning which areas of
memory remain intact across a .CHAIN. 1In general, only the
resident monitor and locations 500-777 are preserved across a
.CHAIN.

2. I/0 channels are left open across a .CHAIN for use by the new
program. However, new I/0 channels opened with a .CDFN
request are not available in this way. Since the monitor
reverts to the original 16 channels during a .CHAIN, programs
that leave files open across a .CHAIN should not use .CDFN.
Furthermore, non-resident device handlers are released during
a .CHAIN, and must be .FETCHed again by the new program.

PROGRAMMED REQUESTS

3. An executing program can determine whether it was CHAINed to
or RUN from the keyboard by examining bit 8 of the JSW. The
monitor sets this bit if the program was invoked with .CHAIN.
If the program was invoked with R or RUN command, this bit
remains cleared. If bit 8 1is set, the information in
locations 500-777 1is preserved from the program that issued
the .CHAIN, and is available for the currently executing
program to use.

An example of a calling and a called program is MACRO and
CREF. MACRO places important information in the chain area,
locations 500-777, then chains to CREF. CREF tests bit 8 of
the JSW. If it is clear, it means that CREF was invoked with
the R or RUN command and the chain area does not contain
useful information. CREF aborts itself immediately. If bit
8 is set, it means that CREF was invoked with .CHAIN and the
chain area contains information placed there by MACRO. 1In
this case, CREF executes properly.

Errors:

.CHAIN is implemented by simulating the monitor RUN command and
can produce any errors that RUN can produce. If an error occurs,
the .CHAIN is abandoned and the keyboard monitor is entered.

When using .CHAIN, care should be taken for initial stack
placement, since the program being chained to is started. The
linker normally defaults the initial stack to 1000 (octal); if
caution is not observed, the stack can destroy chain data before
it can be used.

Example:

oTITLE ChHAIN,MAC
JTHIS EXAMPLE CnhAINS TO THE PROGKAM CALLED MYPROG,SAV
JAND PASSES A TYPED LINE TO THE FROGRAM,

o¥CALL (CHAIN, TTYIN

START: MOV, BSCIRY $SET UP TO CHAIN
MOV #CHPTR,R2 JOEVICE, FILE NAME TO S@@=Sy}
JKEPT 4
MOV (R2)+,(R1)*
JENDK

LooP; «TTYIN JNOm GET A COMMAND LINE
MOVB RZsI(RL)¢ JAND PASS IT TO THE JOB
CHPB Ra,#®}e $IN LOCATIONS S12 AND UP
BME LooP sLOOP UMTIL LINE FEED
CLRB (R1)¢ JPUT IN A NuULL BYTE
oCHAIN

CHPTRE HADSS /DK /
«¥AOSY /MYPROG/
oRADSY® /SAvV/
«END START

PROGRAMMED REQUESTS

.CHCOPY

2.4.3 .CHCOPY (FB and XM Only)

The .CHCOPY request opens a channel for input, logically connecting it
to a file that is currently open by the other job for either input or
output. This request can be used by either the foreground or the
background. .CHCOPY must be issued before the first .READ or .WRITE.

.CHCOPY is legal only on files on disk (including diskette) or
DECtape; however, no errors are detected by the system if another
device is used. (To close a channel following use of .CHCOPY, use
either the .CLOSE or .PURGE request.)

Macro Call: .CHCOPY area,chan,ochan

where: area is the address of a two-word EMT argument
block
chan is the channel the current job will use to

read the data

ochan is the channel number of the other job's
channel to be copied

Request Format:

RO -+ area: 13 [chan
ochan

Notes:

1. If the other job's channel was opened with .ENTER in order to
create a file, the copier's channel indicates a file that
extends to the highest block that the creator of the file had
written at the time the .CHCOPY was executed.

2. A channel open on a non-file-structured device should not be
copied, because intermixture of buffer requests can result.

3. A program can write to a file (that is being created by the
other job) on a copied channel just as it could if it were
the creator. When the copier's channel is closed, however,
no directory update takes place.

Errors:
Code Explanation
0 Other job does not exist, does not have
enough channels defined, or does not have the
specified channel (ochan) open.

1 Channel (chan) already open.

PROGRAMMED REQUESTS

Example:

«TITLE CHCOPF,MAC
ITHIS 18 TWE FOREGAOUND PROGRAM TO BE RUN IN
TCONJUNCTION WITH CHCOPY,MAC FOR THME EXECUTION OF
JTHE CHCPPY EXAMPLE,

SMCALL oLOOKUP, s PRINT, ,SDATW, sEXIT, sRCVOW

STarT; wov SAREA,RS
«LOOKUP RS 8i,8FILE
8Cs LKERR
«S0ATW RS,sAUFR, 82 JPASS BLOCK & AND CHANNELS
170 BACXGROUND JOB
L]14 } NJERR INOT THERE
+RCVOm RS,8BUF2,82 IWAIT FOR RETURN MESSAGE
JEXIT
NJERRy MOV SNJMSG,R0O
PuSGy JPRINY
0K 1 JEXIT
LKERRy MOV SLKMSGIRO
s8R pPMSG
FILEs LR4DS2 /DK TEST TMP/
AREA} oBLUW [
AUFR, +WORD [} 18LOCK &
«WORD 1 JCHANNEL »

sufa: LKW 3
LxkM8Gy LASCIZ /LOOKUP ERROR/
NJM8Gy LASCIZ /NO BACKGROUND 308/
+EVEN
<END 8TARTY

LTITLE CcweOPY, MaC
JIN THYI8 EXAMPLE, ,CHCOPY I8 USED TO READ DATA CURRENTLY
JBEING WRITTEN BY THE OTHER JOB. THE CORRECT BLOCK
INUMBER AND CHANNEL TO READ I8 OBTAINED BY 4 «RCYDW COMMAND.
ITHE CWMANNEL NUMBER WILL BE IN M8Gede THE CHCOPK' MAC PROGRAM
IMUST 8E EXECUTED IN TWE FOREGROUND,
JMCALL L CHCOPY, ,RCVOW, PURGE, ,READW, EXIT, PRINT
ST +PURGE w0 IMAKE SURE wE WAVE CLEAR
JCHANNEL
JRCVOW ®AREA,¥MSG,%2 JREAD TwO wQORDS, BLOCK ®
JAND CHANNEL

.14] NOJOS8 INO JOB THERE
«CHCOPY SAREA,#3,)M8G*4 jCHANNEL # I8 IN THERE
8Cs BUSY JsuT BUSY
oREADW WAREA,#0,8BUFF,8256¢,48Ge2 jGET TWE CORRECT BLOCK
8Cs RDERR
+PRINT #0KMSG
JEXIT
NOJOBy PRINT wMSGH
JEXIT
BUSY oPRINT aM8G2
JLEXIT
ROERRy ,PRINT #MSG)
JEXIT

AREA} oBLXW 8
LE] oBLKW -]
BUFF, oBLAN 296,
MSG1,y «ASCIZ /NO JOBY/
MsGat +ASCIZ /BUSY Y/
“3Gy, «ASCIZ /READ ERROR/
OKMSGy LASCIZ /READ OK/
+EVEN

oEXIT

«END 87

PROGRAMMED REQUESTS

.CLOSE

2.4.4 .CLOSE

The .CLOSE request terminates activity on the specified channel and
frees it for use in another operation. The handler for the associated
device must be in memory.

Macro Call: .CLOS&Z chan

Request Format:

RO = (6] chan |
A .CLOSE request specifying a channel that is not opened is ignored.

A file opened with .LOOKUP does not require any directory operations
when a .CLOSE is issued and the USR does not have to be in memory for
the .CLOSE.

A .CLOSE 1is required on any channel opened for output if the
associated file is to become permanent.

A .CLOSE performed on a file opened with .ENTER causes the device
directory to be wupdated to make that file permanent. If the device
associated with the specified channel already contains a file with the
same name and file type, the 0ld copy is deleted when the new file is
made permanent. When an .ENTERed file 1is .CLOSEd, its permanent
length reflects the highest block written since it was entered. For
example, if the highest block written is block number 0, the file |is
given a length of 1; if the file was never written, it is given a
length of 0. If this length is less than the size of the area
allocated at .ENTER time, the unused blocks are reclaimed as an empty
area on the device. 1In magtape operations, the .CLOSE request causes
the handler to write an ANSI EOF1 label in software mode (using MM.SYS
or MT.SYS) and to close the channel in hardware mode (using MMHD.SYS
or MTHD.SYS).

Errors:

.CLOSE does not return any errors (unless the .SERR system
service has been issued). If the device handler for the
operation is not in memory, and the .CLOSE request requires
updating of the device directory, a fatal monitor error is
generated.

Example:

The examples for the .CSISPC and .WRITW requests show typical
uses for .CLOSE.

PROGRAMMED REQUESTS

.CMKT

2.4.5 LCMKT (FB and XM Only; SJ Monitor SYSGEN Option)

The .CMKT request causes one or more outstanding mark time requests to
be cancelled (mark time requests are discussed in Section 2.4.28).

Macro Call: .CMKT area,id,time

where: area is the address of a three-word EMT argument
block
id is a number used to identify each mark time

request to be cancelled. If more than one mark
time request has the same id, the request with
the earliest expiration time is cancelled. If
id = 0, all nonsystem mark time requests (that
is, those in the range 1-177377) for the
issuing job are cancelled.

time is the pointer to a two-word area in which the
monitor returns the amount of time remaining in
the cancelled request. The first word contains
the high-order time, the second contains the
low-order. 1If an address of 0 is specified, no
value is returned. If id = 0, the time
parameter is ignored and need not be indicated.

Request Format:

RO > area: 23 | o
id
time

1. Cancelling a mark time request frees the associated queue
element for other uses.

2. A mark time request can be converted into a timed wait by
issuing a .CMKT followed by a .TWAIT, and specifying the same
time area.

3. If the mark time request to be cancelled has already expired
and 1is waiting in the job's completion queue, .CMKT returns
an error code of 0. It does not remove the expired request
from the completion queue. The completion routine will
eventually be run.

Errors:
Code Explanation
0 The id was not zero; a mark time request with the
specified identification number could not be found
(implying that the request was never issued or
that it has already expired).
Example:

See the example following the description of the .MRKT request.

2-36

PROGRAMMED REQUESTS

.CNTXSW

2.4.6 .CNTXSW (FB and XM Only)

A context switch is an operation performed when a transition 1is made
from running one job to running the other. The .CNTXSW request is
used to specify locations to be included in the switching of jobs
between background and foreground.

The system always saves the parameters it needs to uniquely identify
and execute a job. These parameters include all registers and the
following locations:

34,36 Vector for TRAP instruction
40-52 System communication area

If an .SFPA request has been executed with a non-zero address, all
floating point registers and the floating point status are also saved.

It is possible that both jobs want to share the use of a particular
location that is not included in normal context switch operations.
For example, if a program uses the IOT instruction to perform an
internal user function (such as printing error messages), the program
must set up the vector at 20 and 22 to point to an internal IOT trap
handling routine. If both foreground and background wish to use IOT,
the IOT vector must always point to the proper location for the job
that is executing. Including locations 20 and 22 in the .CNTXSW list
for both jobs accomplishes this. In the XM monitor, both IOT and BPT
vectors are automatically context switched. The procedure described
above is not necessary for jobs running under the XM monitor.

If .CNTXSW is issued more than once, only the 1latest 1list 1is used;
the previous address 1list 1is discarded. Thus, all addresses to be
switched must be included in one list. If the address (addr) is 0, no
extra locations are switched. The 1list cannot be in an area into
which the USR swaps, nor can it be modified while a job is running.

In the XM monitor, the .CNTXSW request is ignored for wvirtual jobs,
since they do not share memory with other jobs. The IOT, BPT, and
TRAP vectors are simulated for virtual jobs by the monitor. The
virtual job sets up the vector in its own virtual space by any of the
usual methods (such as a direct move or an .ASECT). When the monitor
receives a synchronous trap from a virtual job that was caused by an
IOT, BPT, or TRAP instruction, it checks for a valid trap vector and
dispatches the trap to the user program in user mapping mode. An
invalid trap vector address will abort the job with the following
fatal error message:

?MON-F-ILL SST (illegal synchronous system trap)
Macro Call: .CNTXSW area,addr
where: area is the address of a 2-word EMT argument block
addr is a pointer to a list of addresses
terminated by a zero word. The addresses in
the list must be even and:
a. in the range 2-476, or
b. in the user job area, or
c. 1in the I/0 page (addresses
160000-177776) .

2-37

PROGRAMMED REQUESTS

Request Format:

RO -+ area: 33 | o
addr
Errors:
Code Explanation
0 One or more of the above conditions was violated.
Example:

oTITLE CNTX8w MAC
JIN TMTS EYAMPLE, ,CNTXSW REQUEST I8 USED T0 SPECIFY TMAY LOCATION 20
JAND 22 (10T VECTORS) AND CERTAIN NECESSARY EAE RECISTERS OE CONTEXT
ISWITEWED, THIS ALLOWS BOTH JOSS TO USE IOT AND THE EAE SImMULTANEOUSLY
IYET INOEPENDENTLY,

MCALL .CNYISh,.PlINY..(XIY

STARTy; wQVv sL187,08 JSET RO YO QUR OwWN (]8T
+CNTXSW ,88wApLS JTHE LI8Y OF ADDRS 18
1AT BwaPLS,
[]144 13
«PRINT SADDERR JADDRESS ERROR(SWOULD NOT ocCum)
JEXIT
181 «PRINT SCNTOK
C JENY
SWAPLS; ,wORD 20 JADDPESSES TO INCLUDE IN L1I8T
«¥NRD 22

JHORD 177302
«WORD 177304
«WORD 177310

o WORD]
LI8Te o8YTE 8,33 JFUNCTION COOE wORD

«WORD L] JTHE MACRO PILLS TWMIS ONE.
ADDERRy LASCIZ /ADORESSING ERRQOR,

«EVEN
CNTOKg ,a8CIZ /CONTEXT SWITCM 0K,/

+EVEN

+END STaARY

.CSIGEN

2.4.7 .CSIGEN

The .CSIGEN request calls the Command String Interpreter (CSI) in
general mode to process a standard RT-11 command string. 1In general
mode, all file .LOOKUPs and .ENTERs as well as handler .FETCHs are
performed. This request gets the program's user command string (dev:
output-filespec=dev:input—filespec/options...) into the program, and
the following operations occur:

l. The devices specified in the command line are fetched.

2. .LOOKUP and/or .ENTER requests on the files are performed.

3. The option information is placed on the stack.
When called in general mode, the CSI closes channels 0-10 (octal).
.CSIGEN loads all necessary handlers and opens the files as specified.
The area specified for the device handlers must be large enough to
hold all the necessary handlers simultaneously. If the device
handlers exceed the area available, the user program can be destroyed.
(The system, however, is protected.)

2-38

PROGRAMMED REQUESTS

When control returns to the user program after a call to .CSIGEN,
register RO points to the first available location above the handlers,
the stack contains the option information, and all the specified files
have been opened for input and/or output. The association is as
follows: the three possible output files are assigned to channels 0,
1, and 2(octal); the six input slots are assigned to channels 3
through 10(octal). A null specification causes the associated channel
to remain inactive. For example, consider the following string:

* , LP:=F1,F2

Channel 0 is inactive since the first slot is null. Channel 1 is
associated with the line printer, and channel 2 is inactive. Channels
3 and 4 are associated with two files on DK:, while channels 5 through
10 are inactive. The user program can determine whether a channel is
inactive by issuing a .WAIT request on the associated channel, which
returns an error 1f the channel is not open.

Options and their associated values are returned on the stack. The
first word of the stack contains the number of options. See Section
2.4.8.1 for a description of the way option information is passed.

Macro Call: .CSIGEN devspc,defext,cstrng(,linbuf]

where: devspc is the address of the memory area where the
device handlers (if any) are to be loaded.

defext is the address of a four-word block that
contains the Radix-50 default file types.
These file types are used when a file |is
specified without a file type.

cstrng is the address of the ASCIZ input string or a
#0 if input 1is to come from the console
terminal. (In an FB environment only, if the
input is from the console terminal, an
.UNLOCK of the USR is automatically
performed, even if the USR is locked at the
time.) If the string is in memory, it must
not contain a <RET><LF> (octal 15 and 12),
but must terminate with a zero byte. If the
cstring field is 1left blank, input |is
automatically taken from the console
terminal. This string, whether in memory or
entered at the console, must obey all the
rules for a standard RT-11 command string.

linbuf is the address where the original command
string is to be stored. This 1is a
user-supplied area 81 decimal bytes in
length. The command string is stored in this
area and 1is terminated with a zero byte
instead of <RET> <LF> (octal 15 and 12).

Notes:

The four-word block pointed to by defext is arranged as:

word 1: default file type for all input channels
Words 2,3,and 4: default file types for output channels 0,1,2,
respectively

2-39

PROGRAMMED REQUESTS

If there is no default for a particular channel, the associated word
must contain 0. All file types are expressed in Radix-50. For
example, the following block can be used to set up default file types
for a macro assembler:

DEFEXT: .RADSO0 "MAC"
.RAD50 "OBJ"
-RAD50 "LST"
.WORD 0

In the command string:
*DTO0:ALPHA,DT1:BETA=DT2: INPUT

the default file type for input is MAC; for output, OBJ and LST. The
following cases are legal:

*DT0:OUTPUT=
*DT2:INPUT

In other words, the equal sign is not necessary if only input files
are specified.

An optional argument (linbuf) is available in the .CSIGEN format that
provides the wuser with an area to receive the original input string.
The input string is returned as an ASCIZ string and can be printed
through a .PRINT request.

-CSIGEN automatically takes its input line from an indirect command
file if console terminal input is specified (cstring = #0) and the
program issuing the .CSIGEN is invoked through an indirect command
file.

Errors:

If CSI errors occur and input was from the console terminal, an
error message describing the fault is printed on the terminal and
the CSI retries the command. If the input was from a string, the
carry bit is set and byte 52 contains the error code. The
options and option-count are purged from the stack. The errors

are:
Code Explanation
0 Illegal command (bad separators, illegal file name,
command too long, etc.).
1 A device specified is not found in the system tables.
2 Unused.
3 An attempt to .ENTER a file failed because of a full
directory.
4 An input file was not found in a .LOOKUP.

PROGRAMMED REQUESTS

Example:

<TITLE CBIGEN MAC

ITHIS sXAMPLE USES THE GENERAL MODE OF THE C81 IN A PROGRAM
170 COPY AN INPUT FILE TO AN OUTPUT FILE, COMMAND INPUT YO THE CSI

118 FROM THE CONSOLE TERMINAL.

MCALL
ERAWDe82
START; ,CSIGEN SDSPACE,sDEXT
Mov Ro,8UFF
cLe INBLKX
Mov sLIST,RS
READS +READW PS,83,8UFF,s2%6,
. 144 2
7878 OSERAND
.]14-] (4014
nov SINERR, RO
181 JPOINT
cLe Ry
JEXIT
2% WWRITw RO,80,8UFF,82396,
144 NOpRR
MOV sWTERR,RY
B8R 19
NOERR; INC INBLX
B8R READ
Eor .CLOSE &0
«CLOSE #)
+ORENETY
JEXIT
DEXTy +WORD 4,0,0,0
LIV JWORD @
INBLK; wORD ")
L1887y oBLKW 5
INERRy ,ASCIZ /INPUT ERROR/
+EVEN
WTYERR; ,ASCIZ /0UTPUT ERAQR/
+EVEN
DSPACEs,
+END START
2.4.8 .CSISPC

The .CSISPC request calls the Command String
string
In this mode,

.ENTERs or

mode to parse the command
options to the program.

handler fetches, .CLOSEs,
associated

Options and their

"COIGEN, (READW, PRINT, (EXIT) WRITm, ,CLOSE, SRESEY

IGEY STRING FROM TERMINAL
IR® MAS FINRSY FREE LOCATION
JINPUT BLOCK &

JEMT ARGUMENT LIST

+INBLK JREAD CHANNEL 3

INO ERRORS

JEOF ERROR?

JVES

1ERROR MESSAGE
JHARD EXTTY

»INBLK JWRITE THE BLOCK
INO ERROR WRITING

JMARD OUTPUT ERROR

JGET NEXY BLOCK

JLO0P UNTIL DONE

JCLOSE OUTPUT CHANNEL

JAND INPUT CHANNEL

SRELEASE HANDLER FROM MEMORY
JEX]T

INO DEFAULTY EXTENSIONS

3170 BUFFER STARY

JRELATIVE BLOCK TO READ/WRITE
JEMT ARGUMENT LIST

SHANOLER 8PACE

.CSISPC

Interpreter 1in special
and return file descriptors and
the CSI does not perform
. LOOKUPs.

values are returned on the stack.

However, the optional argument (linbuf) provides the user program with

the original command string.

.CSISPC automatically takes its input line from an
input
program issuing the .CSISPC is invoked

file if console terminal

file.

indirect command
is specified (cstrng = #0) and the
through an indirect command

2-41

any

PROGRAMMED REQUESTS

Macro Call: .CSISPC outspc,defext,cstrng[,linbuf]

where: outspc is the address of the 39-word block to
contain the file descriptors produced by
-CSISPC. This area can overlay the space
allocated to cstring, if desired.

defext is the address of a four-word block that
contains the Radix-50 default file types.
These file types are used when a file is
specified without a file type.

cstrng is the address of the ASCIZ input string or a
#0 if input 1is to come from the console
terminal. If the string 1is in memory, it
must not contain a <RET><LF> (octal 15 and
12), but must terminate with a zero byte. 1If
cstrng is blank, input is automatically taken
from the console terminal.

linbuf is the address where the original command
string is to be stored. This 1is a
user-specified area 81 decimal bytes in
length. The command string is stored in this
area and is terminated with a zero byte
instead of <RET> <LF> (octal 15 and 12).

Notes:

The 39-word file description consists of nine file descriptor blocks
(five words for each of three possible output files; four words for
each of six possible input files), which correspond to the nine
possible files (three output, six input). If any of the nine possible
file names are not specified, the corresponding descriptor block is
filled with O0s.

The five-word blocks hold Radix-50 four words representing
dev:file.type, and one word representing the size specification given
in the string. (A size specification is a decimal number enclosed in

square brackets [], and following the output file descriptor.) For
example:

*DT3:LIST.MAC[15]=PC:

Using special mode, the CSI returns in the first five-word slot:

16101 Radix-50 for DT3

46173 Radix-50 for LIS

76400 Radix-50 for T

50553 Radix-50 for MAC

00017 Octal value of size request

In the fourth slot (starting at an offset of 36 octal bytes into
outspc), the CSI returns:

62170 Radix~-50 for PC

0 No file name

0 Specified

0 No file type given

Since this is an input file, only four words are returned.

2-42

PROGRAMMED REQUESTS

Errors:

Errors are the same as in general mode except that illegal device
specifications are checked only for output file specifications
with null file names. Since .LOOKUPs and .ENTERs are not done,
the valid error codes are:

Code Explanation
0 Illegal command line
1 Illegal device
Example:

«TITLE COI8PC.MAC
ITHIS gXAMPLE ILLUSTRATES THE USE OF THE SPECIAL MODE OF CSIe
ITHIS eXamMPLE COULD BE A PROGRAM TO READ A PILE wHICH IS NOT IN
IRT®41 PORMAY TO A PILE UNDER RTeli,

oMCALL oCSISPCIoePRINT,EXITo ENTER, CLOSE

8TARYy; ,C818PC sQUTSPC,sDEXT,8CSTRNG JGET INPUT FRQOM 4
JSTRING IN MEMORY

(14 23
"oy SSYNERR,RQ 1SYNTAX ERROR
183 oPRINT JERROR MESSAGE
ExlY
284 CENTER #LIST,#@,s0UTSPC,864, JENTER FILE UNDER RTefl
sce 3
MOV #ENMSG,RO JENTER FAILED
(1] 19
38 Janm RS, INPUTY JROUTINE INPUT wilLL USE
STHE INFORMATION aY
I80UTSPC+36 TO READ INPUT
JPROM THE NONeRT1] DEVICE.
JINPUT 18 PROCESSED AND
JWRITTEN VIA WRITW REQUFSTS
«CLOSE ¥ IMAKE OUTPUT FILE PERMANENT.
JEXIT JAND EXIT PROGRAM
CSTANGy ,A8CIZ *"OT4gRTFIL MACEDT21008,MaC"
EVEN
DEXTy .wORD ©,0,0,3 INO DEFAULT EXTENSIONS
LI8Ty oBLKW L] JLIST FOR EMT CALLS

SYNERR,; ,ASCIZ "C8] ERROR"

ENMBGE ,ASCIZ “ENTER PAILED"
JEVEN

INPUT; RTS (1)

ouTSPc,, 1CS1 LIST GOES WERE
+END START

2.4.8.1 Passing Option Information - In both general and special
modes of the CSI, options and their associated values are returned on
the stack. A CSI option is a slash (/) followed by any character.
The CSI does not restrict the option to printing characters, although
it is suggested that printing characters be used wherever possible.
The option can be followed by an optional value, which is indicated by
a : separator. The : separator is followed by either an octal
number, a decimal number or by one to three alphanumeric characters,
the first of which must be alphabetic. Decimal values are indicated
by terminating the number with a decimal point (/N:14.). If no
decimal point is present, the number is assumed to be octal. Options
can be associated with files with the CSI. For example:

*DK:FOO/A,DT4:FILE.OBJ/A:100

PROGRAMMED REQUESTS

In this case, there are two A options. The first is associated with
the input file DK:FOO. The second is associated with the input file
DT4:FILE.OBJ, and has a value of 100 (octal). The format of the stack
output of the CSI for options is as follows:

Word ¢ Value Meaning
1 N Number of options found in
(top of command string. If N=0, no options
stack) were found.
2 Option value Even byte = seven-bit ASCII option
and file number value.

Bits 8-~14 = Number (0-10) of the file
with which the option is
associated.

Bit 15 = 1 if the option had a
value.

= 0 if the option had no
value.
3 Option value If bit 15 of word 2 is set, word 3
or next option contains the option value. If bit 15

is not set, word 3 contains the next
option value.

For example, if the input to the CSI is:
*FILE/B:ZO.,FIL2/E=DT3:INPUT/X:SY:ZO

on return, the stack is:

Stack Pointer-> 4 Three options appeared (X option has
two values and is treated as two
options).

101530 Last option=X; with file 3, has a
value.
20 Value of option X=20 (octal)
101530 Next option =X; with file 3, has a
value.
075250 Next value of option X=RAD50 code for
SY:.
505 Next option=E; associated with file
1, no value.
100102 Option=B; associated with file 0 and
has a value of 20 (decimal) or 24
24 (octal).

As an extended example, assume the following string was input for the
CSI in general mode:

*FILE[8.],LP:,SY:FILE2[20.]=PC:,DTl:INl/B,DTZ:INZ/H:7

Assume also that the default file type block is:

DEFEXT: .RADS0 'MAC' ; INPUT FILE TYPE
.RADS0 'OP1"’ ;FIRST OUTPUT FILE TYPE
.RADS0 ‘OP2' ;SECOND OUTPUT FILE TYPE
.RADS50 'OP3' ;THIRD OUTPUT FILE TYPE

PROGRAMMED REQUESTS

The result of this CSI call are:

1.

An eight-block file named FILE.OPl is entered on channel 0 on
device DK:; channel 1 is open for output to the device LP:;
a 28-block (to show that it is a decimal number) file named
FILE2.0P3 is entered on the system device on channel 2.

Channel 3 is open for input from paper tape; channel 4 is
open for input from a file IN1.MAC on device DTl:; channel 5
is open for input from IN2.MAC on device DT2:.

The stack contains options and values as follows:

Contents Explanation
2 Two options found in string.
102515 Second option is M, associated with
Channel 5; has a value.
7 Numeric value is 7 (octal).
2102 Option is B, associated with

Channel 4; has no value.

If the CSI were called in special mode, the stack would be the same as
for the general mode call, and the descriptor table would contain:

OUTSPC: 15270 ; . RADS0 'DK'’
23364 ; . RADS0 'FIL'
17500 ; . RADSO0 'E’
60137 ; .RADS0 '‘oprl’
10 ;s LENGTH OF 8 BLOCKS (DECIMAL)
46600 ; .RADS0 'LP’
0 ;NO NAME OR LENGTH SPECIFIED
0
0
0
75250 ; . RADS50 'sy’
23364 ; .RADS0 'FIL'
22100 ; . RADS0 'E2'
60141 ; .RAD50 'OP3"’
24 ; LENGTH OF 20 (DECIMAL)
62170 ; .RADS50 'PC'
0
0
0
16077 ; .RADS0 'DT1'
35217 ; . RADS0 'IN1'
0 ; . RADS0 ! !
50553 ; .RADS0 'MAC'
16100 ; . RADS0 'DT2'
35220 ; . RADS0 'IN2'
0 ; .RADSO0 ' !
50553 ; .RADSO0 'MAC'
0
0 (12 more zero words

are returned)

2-45

PROGRAMMED REQUESTS

Keyboard error messages that can occur from incorrect use of the CSI
when input is from the console keyboard include:

Message Meaning
?2CSI-F-Illegal command Syntax error.
?2CSI-F-File not found Input file was not found.
?CSI-F-Device full Output file does not fit.
2CSI-F-Illegal device Device specified does not exist.

Notes:

1. 1In many cases, the user program does not need to process
options in CSI calls. However, the user at the console can
inadvertently enter options. 1In this case, it 1is wise for
the program to save the value of the stack pointer before the
call to the CSI, and restore it after the call. 1In this way,
no extraneous values are left on the stack. Note that even a
command string with no options causes a word to be pushed
onto the stack.

2. In the FB monitor, calls to the CSI that require console
terminal input always do an implicit .UNLOCK of the USR.
This should be kept in mind when using .LOCK calls.

.CSTAT

2.4.9 .CSTAT (FB and XM Only)

This request furnishes the user with information about a channel. It
is supported only in the FB and XM environments; no information is
returned by the SJ monitor.

Macro Call: .CSTAT area,chan,addr

where: area is the address of a two-word EMT argument
block
chan is the number of the channel about which

information is desired

addr is the address of a six-word block to contain
the status

Request Format:

RO -+ area: 27 | chan
addr

Notes:
The six words passed back to the user are:

1. Channel status word (bit @ set = hard error;
bit 13 set = end of file)

2. Starting block number of file (0 if sequential-access device
or if channel was opened with a non-file-structured .LOOKUP
or .ENTER)

3. Length of file (no information if non-file-structured device

or if channel was opened with a non-file-structured . LOOKUP
or .ENTER)

2-46

PROGRAMMED REQUESTS
Highest relative block written since file was opened (no
information if non-file-structured device)
Unit number of device with which this channel is associated
Radix-50 of the device name with which the channel is

associated (this is a physical device name, unaffected by any
user name assignment in effect)

The fourth word (highest block) is maintained by the
.WRITE/.WRITC/.WRITW regquests. If data 1is being written on this

channel, the highest relative block number is kept in this word.
Errors:
Code Explanation
0 Tne channel is not open.
Example:

JTITLE CBTAT MaC

1IN

TS EYAMPLE, ,CSTAT I8 USED TO DETERMINE THE ,RADSO

JREPRESENTATION OF TWE DEVICE WITH WMICW TWE CHANNEL 18 aSSOCIATED.

oMCALL oCOTATICSIGEN' (PRINT/ EX]TY

STy +CSIGEN SDEVSDC,¥DEFEXT JOPEN FILES
+COTAT wAREA,40,0A00R JGET THE STATUS
8Cs NOCHAN JCHANNEL @ NOT OPEN
MOV SADDRe§Q,RS JPOINT TO UNIT »
MoV (RS)e,RQ JUNIT & T0 RO
ADD (Pc)s,Re JMAKE IT RaADSE
JR4D%0 / ¥/
A0D (RS),RD JGET DEVICE NAME
oV RA,DEVNAM JOEVNAM HAS RADS® DEVICE NaAME
JEXIT
AREA} oBLKw] JEMT ARG LIST
ADDR} BLKW 6 JAREA FOR CHANNEL STATUS
DEVNAMy ,WORD ('] JSTORAGE FOR DEVICE NAME

DEFEXT; (wORD $,0,0,0
NOCHANG +PRINT 8#MSG

JEXIT
MSG} +A8C12 /NO OUTPUY FILE/
«EVEN
DEVSNDCe,
+END 87
.DATE
2.4.10 .DATE

This request returns the current date information from the system date
word in RO. The date word returned is in the following format:

Bit

The year

: 13 ... 109 ... 54 ... 0
N—— v\ p— —— “aa— —

MONTH DAY YEAR

value in bits 4-0 is the actual year minus 72.

PROGRAMMED REQUESTS

NOTE

RT-11 does not support month and year
roll-over.

command must be

The keyboard monitor DATE

issued to change the

month and year appropriately.

Macro Call: .DATE

Request Format:

RO =

Errors:

No errors are returned.

A zero result in RO indicates that

user has not entered a date.

Example:

the

This example is a subroutine that can be assembled separately and
linked with a user's program.

oTITLE DATE.MAC

JSR

INPUTS NOne

W6 Ne We e Ne Ve e Ve we e e e~

«MCALL
DATE: S
.DAIE
MOV
BeQ
BIC
ASR
ASKR
Muv
SwAD
B1C
ASR
ASR
ASR
B1C
CLC
BR
1us: SEC
208; RTS

oEND

CALLING SEQUENCE:

PC,VALE

OUTPUT: RO = DAY (1-31)
K1 = MONTH (1-12)
R2 = YEAR =7%

«DALE

KO ,R2
108
#°C37,Re
RV

KO

RU,R1

R1
#$°C37,K1
RO

RO

RO
#°C37,R0

4Vs8

pC

ERKOR: CARRY SET INDICATES NU UATE SPECIFIED

JGET THE SYSTEM DATE

$COPY THE DATe

;BRANCH LF NO DATE

; ISOLATE THE YEAR

sPUT THE MUNTH OM A BYTE BOUNDARY

’

;COPY The UAILE

JPUT THE MONTH IN THE LOW BYTE

3 ISOLATE fTHE MONTH

JSHIFT THe DAY TO Thk BYTE BOUNDARY
H

H

s ISOLATE THE DAY

s INDICATE NO ERROR

3} RETURN

7NO DATE. INDICATE ERRUR

2-48

PROGRAMMED REQUESTS

.DELETE

2.4.11 .DELETE

The .DELETE request deletes a named file from an indicated device.
This request generates a monitor error if a hard I/0 error is detected
during directory 1/0. The .SERR programmed request can be used to
allow the program to process the error. .DELETE is illegal for
magtapes.

Macro Call: .DELETE area,chan,dblk,segnum

where: area is the address of a three-word EMT argument

block.

chan is the device channel number in the range
0-377 (octal)

dblk is the pointer to the address of a four-word
Radix-50 descriptor of the file to be
deleted.

segnum file number for cassette operations: if this

argument is blank, a value of 0 is assumed.

Request Format:

RO + area: 0 : chan

dblk
_segnum

Note:

The channel specified in the .DELETE request must not be open when the
request is made, or an error will occur. The file is deleted from the
device, and an empty (UNUSED) entry of the same size is put in its
place. A .DELETE issued to a non-file-structured device is ignored.
.DELETE requires that the handler to be used be in memory at the time
the request is made. When the .DELETE is complete, the specified
channel is left inactive.

Errors:
Code Explanation
0 Channel is active
1 File was not found in the device directory
2 Illegal operation

2-49 September 1978

PROGRAMMED REQUESTS

Example:
oVITLE DELETE,MAC ;
ITHIS sXAMPLE USES THME SPECIAL MONE OF ¢S] 10 DELETE FILES,
VINSPEC 1S THE ADDRESS OF THWE FIRSY INPUT SLOT InN TWwE CST
JINPUT TaBLE.
oMCALL .SQESEYo.CSIS’C,.DELEYt'.PRINlo.FAIY
START; L SRESEY IMAKE SURE CHMANNFLS
JARE FREE
+CSISPC SOUTSPC,#DEFEXT JGET COMMAND | INE
JTERMINAL OJALOG waS
IDTIFILE
oODELETE #LIST,00,8INSPC JUSE CMAMNEL @ 10O
TDELETE TWE FILE
IwHICH [S AT THE
IFIRST INPUT SLOT,
ace 198 JOK? LDOP aGAIN
PRINT SNOFILE INO SUCH FILE
181 Lxlt sExlY
NOFILE:r ,ASCI2 /FILE NOY FOUND,
+EVEN
DEFEXTy ,RANSD /MaC/ 1oMAC INPUT EXTENSION
«WORD n,8,0 INO OUTPUT DEFAULTS
LI8T: ALK H 1EMY AmG 18T
ouTsPc,,
INSPCe, ¢30
oBLKW 39,
«END STARY
.DEVICE

2.4.12 .DEVICE (FB and XM Only)

This request allows the user to set up a list of addresses to be
loaded with specified values when a program is terminated. Upon an
-EXIT or CTRL/C, this 1list is picked up by the system and the
appropriate addresses are filled with the corresponding values. This
function is primarily designed to allow user programs to load device
registers with necessary values. 1In particular, it is used to turn
off a device's interrupt enable bit when the program servicing the
device terminates. Successive calls to .DEVICE are allowed when the
user needs to link requested tables. When the job is terminated for
any reason, the 1list is scanned once. At that point, the monitor
disables the feature until another .DEVICE call is executed. Thus,
background programs that are reenterable should include .DEVICE as a
part of the reenter code.

The .DEVICE request is ignored when it is issued by a wvirtual job
running under the XM monitor.

Macro Call: .DEVICE area,addr[,link]

where: area is the address of a two-word EMT argument
block.
addr is the address of a 1list of two-word

elements, each composed of a one-word address
and a one-word value to be put at that
address.

2-50

PROGRAMMED REQUESTS

link is the optional argument, L, that allows
linking of tables on successive calls to
.DEVICE. If the argument 1is omitted, the
list referenced in the previous .DEVICE
request is replaced by the new 1list. The
argument must be supplied to cause linking of
lists; however, 1linked and unlinked 1list
types cannot be mixed.

Request format:

Non-linking Linking
RO+area: [14 [0 RO+area: [14 [1
addr addr
NOTE

The list referenced by addr must be
either 1in linking format or non-linking
format. The different formats are shown
below. Both formats must be terminated
with a separate, zero-value word.
Linking format must also have a
zero-value word as its first word.

Non-1linking Linking
addr > address addr > 0
value address
address value
value address
: value
address :
value address
0 value
0

Errors:
None.
Example:

+TITLE DOEVICE,MAC
JTHE FOLLOWING EXAMPLE SHOWS +OEVICE I8 USED TO DISABLE
JINTERAUPTS FROM THE APCI1 (A=D CONVERTER
18UBegysTEM),
.McaLL LOEVICE,,EXIT

STARTy LOEVICE sLl8T

o"IY
L187e «BYTE 9,14 1EMT ARG LT8TY
+TORD ATOD
ATO00¢ 172870 JADORESS 18 172579
] PJAM 4 © INTO IT
[JTHIS @ TERMINATES THE (18T,

+END STARY

PROGRAMMED REQUESTS

.DSTATUS

2.4.13 .DSTATUS

This request is used to obtain information about a particular device.

Macro Call: .DSTATUS retspc,dnam

where: retspc is the four-word space used to store the
status information.

dnam is the pointer to the Radix-50 device name.
-DSTATUS looks for the device specified by dnam and, if found, returns
four words of status starting at the address specified by retspc. The
four words returned are:

1. Status Word

Bits 7-0: contain a number that identifies the device in
question. The values (octal) currently defined

are:
0 = RKOS5 Disk
1 = TCl1l DECtape
2 = Reserved
3 = Line Printer
4 = Console Terminal or
Batch Handler
5 = RLOl Disk
6 = RX02 Diskette
7 = PCll High-speed paper tape reader and
punch
10 = Reserved
11 = Magtape (TM1l, TMAll)
12 = RF11 Disk
13 = TAll Cassette
14 = Card Reader (CR11,CM11)
15 = Reserved
16 = RJ03/4 Fixed-head Disks
17 = Reserved
20 = TJUl6 Magtape
21 = RP02 Disk
22 = RX01 Diskette
23 = RK06/07 Disk
24 = Error Log Handler
25 = Null Handler
26-30 = Reserved (NETWORKS)
31-33 = Reserved (DIBOL LP,LQ,LR,LS)

Bit 15: 1= Random-access device (disk, DECtape)
0= Sequential-access device (line printer, paper
tape, card reader, magtape, cassette, terminal)
Bit 14: 1= Read-only device (card reader, paper tape
reader)
Bit 13: 1= Write-only device (line printer, paper tape
punch)
Bit 12: 1= Non RT-11 directory-structured device
(magtape, cassette)

2-52

PROGRAMMED REQUESTS

Bit 11: 1= Enter handler abort entry every time a job is
aborted.
0= Handler abort entry taken only if there is an
active gqueue element belonging to aborted job.
Bit 10: 1= Handler accepts .SPFUN requests (for example,
MT, CT, DX).
0= .SPFUN requests are rejected as illegal.

2. Handler size.
The size of the device handler, in bytes.
3. Load address +6.

Non-zero implies the handler is now in memory; 2zero implies
it must be .FETCHed before it can be used. The address of
the handler is the load address +6.

4. Device size.

The size of the device (in 256-word blocks) for
block-replaceable devices; 0 for sequential-access devices.
The last block on the device is the device size minus 1.

The device name can be a user-assigned name. DSTATUS information is
extracted from block 0 of the device handler. Therefore, this request
requires the handler file for the device to be present on the system
volume, unless the device 1is the system device. The system device
handler is always memory resident.

Errors:
Code Explanation
0 Device not found in tables.
Example:

JTITLE O8YATU MAC
JTHIS FXAMPLE SMOWS WOW TO DETERMINE IF A PARTICULAR DEVICE HANDLER
118 IN MEMORY AND, IF IT I8 NOT, WMOw TO FPETCH IT TWERE.

«MCALL ,DBTATUS, ,PRINT, EX]IT,,FETCH

STARYy; ,DSTATUS SCORE,sPPTR IGET 8TATUS OF DEVICE

.14 4 18
.:nx:v sILLOEY JDEVICE NOT IN TABLES
JErl
181 T8Y ComEee 118 OEVICE RESIDENT?
(1 2s
LFETCH BSHNDLR,®FPTR INO, GET IV
144 23
PRINT SFEFAIL JFETCH FAILED
JExlY
281 LPRINT #FECHOK
LEN1T
CORE}y JOLKw] $08ATUS GOES MHERE

FPTRy +Rap%¢ /Dv0/ JIDEVICE NaME
+RADSO /FILE MAC/ pFILE NaME

FEPAIL: ,ASCIZ /FETCH FAJLED/

TLLOBVy ,ASCIZ /1LLEGAL DEVICE/

+EVEN
FECHOK, ,A8C12 /FETCH O,x,/
JEVEN
HNDLRs JHANDLER wILL GO MHERE

+END STARY

.ENTER

2.4.14 .ENTER

PROGRAMMED REQUESTS

The .ENTER request allocates space on the specified device and creates
a tentative entry for the named file. The channel number specified is

associated with the file.

(Note that if the program is overlaid,

channel 15 is used by the overlay handler and should not be modified.)

Macro Call:

where:

-ENTER area,chan,dblk,len,segnum

area

chan

dblk

len

segnum

is the address of a four-word EMT argument
block

a channel number in the range 0-377 (octal)

the address of a four-word Radix-50
descriptor of the file to be operated upon

is the file size specification. If the
argument is left blank, it is not set to 0 in
area. The #0 must be specified to accomplish
this. If an argument 1is 1left blank, the
corresponding location in area is assumed to
be set.

The value of this argument determines the
file length allocation as follows:

0 - either half the largest empty entry or
the entire second-largest empty entry,
whichever is larger. (A maximum size

for non-specific .ENTERs can be patched
in the monitor by changing RMON offset
314).

m - a file of m blocks. The size, m, can
exceed the maximum mentioned above.

-1 - the largest empty entry on the device.

file number for cassette. If this argument
is blank, a value of 0 is assumed.

For magtape it describes a file sequence
number that can have the following values:

0 - means rewind the magtape and space
forward until the file name is found or
until logical end-of-tape 1is detected.

- If file name 1is found, delete it and
continue tape search.

n - means position magtape at file sequence
number n. If the file represented by
the file sequence number is greater than
two files away from beginning of tape,
then a rewind is performed. If not, the
tape 1is backspaced to the beginning of
the file.

PROGRAMMED REQUESTS

-1 - means space to the 1logical end-of-tape
and enter file.

-2 - means rewind the magtape and space
forward until the file name is found, or
until logical end-of-tape 1is detected.
The magtape is now positioned correctly.
A new logical end-of-tape is implied.

Request Format:

RO + area: 2 chan
I] S
len
seanum

The file created with an .ENTER is not a permanent file until the
.CLOSE on that channel is given. Thus, the newly created file is not
available to .LOOKUP and the channel cannot be used by .SAVESTATUS
requests. However, it is possible to go back and read data that has
just been written into the file by referencing the appropriate block
number. When the .CLCSE to the channel is given, any already existing
permanent file of the same name on the same device is deleted and the
new file becomes permanent. Although space is allocated to a file

during the .ENTER operation, the actual 1length of the file is
determined when .CLOSE is requested.

Each job can have up to 256 files open on the system at any time. If
required, all 256 can be opened for output with the .ENTER function.
.ENTER requires that the device handler be in memory when the request
is made. Thus, a .FETCH should normally be executed before an .ENTER
can be done. On return, RO contains the size of the area actually
allocated for use.

Notes:

When using the zero-length feature of .ENTER, it must be kept in mind
that the space allocated is less than the largest empty space. This
can have an important effect in transferring files between devices
(particularly DECtape and diskette) that have a relatively small
capacity. For example, to transfer a 200-block file to a DECtape on
which the largest available empty space is 300 blocks, a zero-length
transfer does not work. Since the .ENTER allocates half the largest
space, only 150 blocks are really allocated and an output error
occurs during the transfer. However, when transferring from A to B
and the length 1is wunknown on A, do a .LOOKUP first. This request
returns the length and this value can be used to do a fixed-length
.ENTER. If a specific 1length of 200 is requested, however, the
transfer proceeds without error. The .ENTER request also generates
hard errors when problems are encountered during directory operations.
These errors can be detected after the operation with the .SERR
request.

Errors:
Code Explanation
0 Channel is in use.
1 In a fixed length request, no space greater

than or equal to m was found, or in a
non-specific request, the device or the
directory was found to be full.

PROGRAMMED REQUESTS

Example:

oTITLE ENTER,MAC
$4ENTER MAY Bt USED TO OPEN A FILE ON A SPECIFIED DEVICE, AND
JTHEN WRITE OATA FROM MEMORY INTUG THAT FILE AS FOLLOWS:
oMCALL LENTER, ,wkITw, ,CLOSE, ,PRINT
."CALL QSRE'ETI .EXIT, .'lTCNr o’ETYOP

STARYT; ,SRESET JMAKE SURE ALL CHANNELS
JARE CLOSED,
oSETTUP #e2 JASK FOR ALL AVAILABLE MEMORY
oFETCH LIMITe2,8FPRY pFETCH DEVICE MANDLER
B8CS BAOFET J+FETCH ERROR, PROBABLY

JILLEGAL DEVICE,
oENTER ®AREA,82,8FPRT, 89 JOPEN A FILE ON THE DEVICE
JSPECIFIED, LENGTH 2 wILL
;GIVE 1/2 OF LARGEST EMPTY
$1SPACE NOw AVAILABLE,
BLS BADENT $FAILEDO, CHANNEL PROBABLY BUSY
oPRITw BAREA,#0,8BUFF,8END=BUFF/2, 80
JWRITE OATA FROM MEMQRY, THE
$SIZE IS » OF mwORDS BETWEEN
JBUFF AND END, START AT BLOCK ¥,

8CS bBADWRT IWRITE FAJLURE,
«CLOSE w#p JCLOSE THE FILE
CEXIT $AND GO YO KEYBOARD MONITOR,
FPRT; «RADSVH /DK / 1FILE wILL 8€ ON DK
«RADSY /FILE EXT/ JNAMED FILE.EXY
AREA; oBLKW 14 JEMT ARGUMENT L(IST
BADFEI: PRINI #FMSG
CEXLIT
BADENT: PRINI ®EMSG
JEXITS
BADWRT3 PRINI ®wMSG
EXIT

FM8Gs o«ASCIL /BAD FETCH/
EMSGy «ASCIL /BAD ENTER/
WMSG, «ASCIZL /ARITE ERROW/

JEVEN

LIMIT: LLIMIT JPROGRAM LIMITS

BUFF
oNEPT 400 s THIS IS BUFFER TO BE wRITTEN OUT
.'ORD 9,1
+ENDR

END3
+END START

EXIT

2.4.15 L.EXIT

The .EXIT request causes the user program to terminate. When used
from a background job under the FB monitor or XM monitor, or in SJ,
-EXIT causes KMON to run in the background area. All outstanding mark
time requests are cancelled. Any I/0 requests and/or completion
routines pending for that job are allowed to complete. If part of the
background job resides where KMON and USR are to be read, the user job
is written onto the system swap blocks (the file SWAP.SYS). KMON and
USR are then loaded and control goes to KMON in the background area.
If RO = 0 when the .EXIT is done, an implicit .HRESET is executed when

KMON is entered, disabling the subsequent use of REENTER, START or
CLOSE.

PROGRAMMED REQUESTS

The .EXIT request allows a user program to pass command lines to KMON
in the chain information area (locations 500-777(octal)) for execution
after the job exits. This operation is performed in the following
manner:

1. The word (not byte) 1location 510 must contain the total
number of bytes of command lines to be passed to KMON.

2. The command lines are stored beginning at location 512. The
lines must be .ASCIZ strings with no embedded carriage return
or line feed. For example:

.=510
.WORD B-A

A: .ASCIZ /COPY A.MAC B.MAC/
.ASC1Z /DELETE A.MAC/

B .

3. The user program must set bit 11 in the JSW immediately prior
to doing an .EXIT. The .EXIT must be issued with RO = 0.

When the .EXIT request is used to input command 1lines to KMON, the
following restrictions are in effect:

1. If the feature is used by a program that is invoked through
an indirect file, the indirect file context is aborted prior
to executing the supplied command lines. Any unexecuted
lines in the indirect file are never executed.

2. An indirect file can be invoked using this mechanism only if
a single 1line containing the indirect file specification is
passed to KMON. Attempts to pass multiple indirect files or
combinations of indirect command files and other KMON
commands yield incorrect results.

EXIT also resets any .CDFN and .QSET calls that were done and executes
an .UNLOCK if a .LOCK has been done. Thus, the .CLOSE command from
the keyboard monitor does not operate for programs that perform .CDFN
requests.

.EXIT from a completion routine is illegal.

NOTE

It is the responsibility of the user
program to ensure that the data being
passed to KMON is not destroyed during
the .EXIT request. Extreme care should
be exercised to ascertain that the user
stack does not overwrite this data area.

Macro Call: L.EXIT

Errors:

None.

PROGRAMMED REQUESTS

Example:

The following example shows how a program can execute a keyboard
command after exiting.

oTITLE EXIT,mMaC
CHNIFS = 4000

JSw z 44
«MCALL .EXIT
Finls MOV #510,K0 3RO => CUMMUNICATION AKEA
MOV #CMDSTK, K1 3R1 => COMMAND LIST
MOV $FINI,SP JMAKE SUKRE THAT THE STACK 1§
JNOT IN THE COMMUNICATION AREA
10s: MOV (R1)+,(RU)+ ;COPY CUMMAND STRING
Cmp K1, 8CMUEND sDONE?
BLU 1us JBR IF NOT
BIS SCHNIFS ,e8JSwn JSET THE BIT THAT
sTELLS KMON wk LEFT
3A COMMAND LINE FUR IT
CLr RV JRU MUST BE ZERO
JEXIT

CMUSTR: .wURD CMDENVU=CMDST]
CMUS11: ,ASCIZ "DIRECT/FULL *.MAC"
CMDEND:

«EVEN

«END FINI

.FETCH/ .RELEAS

2.4.16 .FETCH/.RELEAS

The .FETCH request loads device handlers into memory from the system
device.

Macro Call: .FETCH addr,dnam

where: addr is the address where the device handler is to
be loaded.
dnam is the pointer to the Radix-50 device name.

The storage address for the device handler is passed on the stack.
When the .FETCH is complete, RO points to the first available location
above the handler. 1If the handler is already in memory, RO keeps the
same value as was initially pushed onto the stack. If the argument on
the stack is less than 400(octal), it is assumed that a handler
-RELEAS is being done. (.RELEAS does not dismiss a handler that was
LOADed from the KMON; an UNLOAD must be done.) After a .RELEAS, a
.FETCH must be issued in order to use the device again.

Several requests require a device handler to be in memory for
successful operation. These include:

.CLOSE .READC .READ "
.LOOKUP «WRITC -WRITE
.ENTER - READW .SPFUN
.RENAME -WRITW .DELETE

It is necessary for all handlers to be resident before using a .FETCH
in the XM monitor; a fatal error occurs otherwise. 1In the FB
monitor, this is necessary only if the .FETCH is issued from within a
foreground job (rather than from a background job) .

2-58

PROGRAMMED REQUESTS

Errors:
Code Explanation
0 The device name specified does not exist, or
there is no handler for that device in the
system.
NOTE
1/0 operations cannot be executed on
devices unless the handler is resident
in memory.
Example:

oTITLE FETCr ™AC
$IN THIS EXAWPLE, THE TT AND PC HANDLERS ARE FETCHED INTO MEMORY
$IN PREPARATIUN FOR THEIR USE BY A PROGRAM, THE PROGRAM SETS ASIDE
$HANCLER SPACEt FROM ITS FREE MEMORY AREA,

JMCALL oFETCH, ,PRINT, ,EXIT, SETTOP

START:
¥Cv LIMITe2,FREE 1SET UP FREE MEMORY POINTER
JSETTUP ®eg $JASK FOR ALL AVAILABLE mMEMORY
»Ov Qa,LIMITe2 $SAVE THE NEw MIGH LIMIT
JPETCH FREEB,STTNAME JFETCH RMANDLERS AT THE ST
JFREE LOCATION IN MEMORY
3cCs FERR JFETCH ERROR
gV ReoR2 §R2 > NEXT FREEt LOCATION
JFETCr R2,8PUNAME sFETCHn PC HWANDLER
’ JIMMEDIATELY FULLOWING
37T MANDLER, ®d POINTS
$TU THE TOP OF PC
JHANDLER UN RETURMN
JFRON THAT CALL,
BCS FERK §NG PC MANDLER
»CV A2, FREE sUPDATE FREE MEMQRY
JPOINTER TQ POINT TO
JNEw BOTTOM OF FREE
JAREA(TOP OF MANDLERS),
«PRINI 80K
NI38!
oK JASClL /FETICM U K,/
tven
FERK, JPRINI 8MSG JPRINT ERKOR MESSAGE
WEXLT JAND EX]T
TINAMESL ,RADSe "TT " $OEVICE NAMES
PCnAMEs HACSe "PC "
LETY JASLIL "CEVICE VOT FUUNL® JEWKOR MESSAGE
.tvth;
FREE JmUn ¢ gPRKEE MEMORY POINTER
LImITS LIV JPROGKAM LIMIIS, enD
JAGRD IS THE WIGH LIMIT
JENC START

PROGRAMMED REQUESTS

The .RELEAS request notifies the monitor that a FETCHed device handler
is no 1longer needed. The .RELEAS request does not modify memory
contents nor does it change any free space pointers. The .RELEAS is
ignored if the handler is:

1. Part of RMON (that is, the system device), or

2. Not currently resident, or

3. Resident because of a LOAD command to the keyboard monitor
.RELEAS from the foreground job under the FB monitor or from any job
under the XM monitor is always ignored, since the foreground job in FB
and all jobs in XM can only use handlers that have been LOADed.

Macro Call: .RELEAS dnam

where: dnam is the address of the Radix-50 device name.
Errors:

Code Explanation

0 Handler name was illegal.
Example:

oTITLE FRELEAS,MAC
PIN THIS EXAMPLE, Tnk UECTAPE WANDLER (OT) IS LOADED INTO MEMQRY,
JUSED, THEN RELEASED, IF THE SYSTEM DEVICE IS OECTAPE, THME MANDLER I8
JALWAYS RESIDENT, ANC FETCH WILL RETURN MSPACE IN R,

oMCALL (FETCh, (RELEAS, EXIT

STARTs ,FETCr LIMIT+2,8DTNAME JLGAD DT WANDLER
8CS FERK $NOT avAalLAaBLE

J USE PANDULER

JHELEAS #DTANAME JMARK DT NO LUNGER [N
JMEMORY,
Bk STAKT
FERRy HALT 30T NOT AVAILABLE
DTNAPE: ,KALSC /DT 7/ pJNAME FOR DT HANDLER
LImITs LLI™D JPROGRAM LIMITS
N 3 STANT

.FORK

2.4.17 L.FORK

-FORK can be used within a standard RT-11 device driver to request a
synchronous system process after an interrupt occurs. The request
does not use the EMT instruction but issues a subroutine call to the
monitor. The .FORK call must be preceded by an .INTEN call, and the
address of a four-word block must be supplied with the request. The
user program must not have left any information on the stack between
the .INTEN and the .FORK call. The contents of registers R4 and RS
are preserved through the call, and on return registers RO-R3 are
available for use.

2-60

PROGRAMMED REQUESTS

The .FORK request is used when access to a shared resource must be
serialized or when a 1lengthy but non-time-critical section of code
must be executed. The .FORK request 1is 1linked into a queue and
serviced on a first-in/first-out basis. On return to the driver
instruction following the call, the interrupt has been dismissed and
the driver 1is executing at priority 0. Therefore, the .FORK request
must not be used where it can be reentered using the same fork block
by another interrupt, for example. It also should not be used with
devices that have continuous interrupts that cannot be disabled.
Chapter 1 of this manual has additional information on the .FORK
request.

Macro call: .FORK fkblk

where: fkblk is a four-word block of memory allocated
within the driver.
Errors:
None.
Note:

For use within a user interrupt service routine, monitor fixed offset
402 (FORK) contains the offset from the start of the resident monitor
to the .FORK request processor. A .FORK request can be done by
computing the address of the .FORK request processor and using a
subroutine instruction. (Under the XM monitor, only privileged jobs
can contain user interrupt service routines.) For example:

MOV @#54,R4 ;GET BASE OF RMON

ADD #402,R4 ;OFFSET TO FORK PROCESSOR
JSR R5,@R4 ;CALL FORK PROCESSOR
.WORD BLOCK-. ; FORK BLOCK

.GTIM

2.4.18 .GTIM

.GTIM allows user programs to access the current time of day. The
time is returned in two words, and is given in terms of clock ticks
past midnight.

Macro Call: .GTIM area,addr

where: area is the address of a two-word EMT argument
block.
addr is a pointer to the two-word area where the

time is to be returned.

Request Format:

RO +area: 21 I 0

2-61

PROGRAMMED REQUESTS

The high-order time is returned in the first word, the low-order time
in the second word. User programs must make the conversion from clock
ticks to hours, minutes, and seconds.

The basic clock frequency (50 or 60 Hz) can be determined from the
configuration word 1in the monitor (see Section 2.2.6). In the FB
monitor, the time of day is automatically reset after 24:00 when a

.GTIM 1is done; in the SJ monitor, it is not. The month is not
automatically updated in either monitor.

The default clock rate 1is 60-cycle. Consult the RT-11 System

Generation Manual if conversion to a 50-cycle rate is necessary.

NOTE
There are also several SYSLIB routines

that perform time conversion. They are
as follows:

1. CVTTIM (see Section 4.3.5)
2. TIMASC (see Section 4.3.98)
3. TIME (see Section 4.3.99)
4. SECNDS (see Section 4.3.93)
Errors:
None.
Example:

«TITLE GTIM MAC
eMCALL oJGTIM, EXIT

START,
WGTIM sLIST,eTIME
JEX1Y
TIMEy ,woRD 9,0 JLON AND MI ORDER TIME
JRETURNED HERE,
LISTE . BLxw 2 JARGUMENTS FOR THE EMT

+END START

PROGRAMMED REQUESTS

.GTJB

2.4.19 .GTJB

The .GTJB request passes a job number, the low memory limit and other
job parameters back to the user program.

In the SJ monitor, the job number and low memory limit are always 0.
In the FB or XM monitor, the job number can either be 0 or 2. If the
job number equals 0 (background job), word 3 equals 0.

Word 4 describes where the I/0 channel words begin. This is normally
an address within the resident monitor. When a .CDFN is executed,
however, the start of the 1I/O channel area changes to the user-
specified area.

Macro Call: .GTJB area,addr

where: area is the address of a two-word EMT argument
block.
addr is the address of an eight-word block into

which the parameters are passed. The values
returned are:

Word 1 ~ Job Number.
0=Background
2=Foreground

2 - High memory limit of job
partition

3 ~ Low memory limit of job
partition

4 - Beginning of I/0 channel
space

5 - Address of job's impure

area in FB and XM monitors
6-8 - Reserved for future use

Request Format:

RO -+ area: 20 —] E}

addr

SR —

Errors:

None.

PROGRAMMED REQUESTS

Example:

«TITLE GTJB, MAC
JUSE ,GTJB TO DETERMINE IF TWIS PROGRAM I8 EXECUTING AS a FOREGROUND
JOR Ao RACKGROUND JOB.

oMCALL oGTJBsePRINTIoEXIT

START,
JGTJ8 sL1I8T,#J0BARG RO POINTS TO 18T woRD On
JIRETURN PROM CALL,
MOV 9FMSG/RY
TST JOBARG 1BACKGROUND?
BNE 18 INO» PRINT FM3G
MOV #8M8G,RY
181 JPRINT R}
JEXIT

FM8G: +ASC1Z /PROGRAM IN FOREGROUND/
8M8G +ASCIZ /PROGRAM IN BACKGROUND/

+EVEN
LIST: JBLKwW 2 JARGUMENTS POR THE EMT
JOBA®G; ,BLxw 8, 1J0B PARAMETERS PASSED BaCk MERE,

+END START

.GTLIN

2.4.20 .GTLIN

This request is used to collect a 1line of input from either the
console terminal or an indirect command file, if one is active. This
request is similar to .CSIGEN and .CSISPC in that it requires the USR,
but no format checking is done on the input line. Normally, .GTLIN
collects a line of input from the console terminal and returns it in
the buffer specified by the user. However, if there is an indirect
command file active, .GTLIN collects the 1line of input from the
command file just as though it were coming from the terminal.

An optional prompt string argument is supported to allow the user to
be queried for input at the terminal. (It is similar to the CSI's
asterisk.) The prompt string argument is an ASCIZ character string 1in
the same format as that used by the .PRINT request. 1If input is from
an indirect command file and the SET TTT QUIET option is in effect,
this prompt is suppressed. If SET TT QUIET is not in effect, the
prompt is printed before the line is collected, regardless of whether
the input comes from the terminal or an indirect file. The prompt
appears only once. It is not reissued if an input line is cancelled
from the terminal by CTRL/U or multiple DELETEs.

User programs that require nonstandard command format, such as the UIC
specification for FILEX, can use the .GTLIN request to accept the
command string input line. .GTLIN tracks indirect command files and
the user program can do a pre-pass of the input line to remove the
nonstandard syntax before passing the edited 1line to .CSIGEN or
.CSISPC.

PROGRAMMED REQUESTS

Macro Call: .GTLIN linbuf[,prompt]

where: 1linbuf is the address of the buffer to receive the
input line. This is a user-specified area up
to 81 decimal bytes in length. The input
line is stored in this area and is terminated
with a zero byte instead of (D) (octal
15 and 12).

prompt is an optional argument and is the address of
a prompt string to be printed on the console
terminal. The prompt string has the same
format as the argument of a .PRINT request.

NOTE

The only requests that can take their
input from an indirect command file are
.CSIGEN, .CSISPC and .GTLIN. The .TTYIN

and .TTINR requests cannot get
characters from an indirect command
file; their input comes from the

console terminal (or from a BATCH file
if BATCH 1is running). The .TTYIN and
.TTINR requests are useful for
information that is dynamic in nature.
For instance, the response to a system
query when deleting all files with a
.MAC file type or when initializing a
disk is usually collected through a
.TTYIN so that confirmation can be done
interactively, even though the process
may have been invoked through an
indirect command file. However, the
response to the linker's "TRANSFER
SYMBOL" query would normally be
collected through a .GTLIN, so that the
LINK command could be invoked and the
start address specified from an indirect
file. Note also that if there is no
active indirect command file, .GTLIN
simply collects an input line from the
console terminal by using .TTYINs.

Errors:
None.
Example:
This example prompts the terminal and accepts a 1line of input.

If the first input character is in the range A through M, the
example prints the line back at the terminal.

2-65

PROGRAMMED REQUESTS

oTITLE GTLIN,MAC
oMCALL ,GTLIN, ,PRINT, EXIT

STARTy GYLIN SLINBUP,SPROMPT ;GET A LINE OF INPUT

MOVS LINBUF ,RP $PICK UP FIRBY CHARACTER
8k EX1v JIF BLANK | INEeEXTY
CMpp R, 81 INOT BLANK, DOES IT BEGIN W]Tw aeM?
L0 STARY JIF L0, NO, JUST GET ANOTHER L INE
CMPp RQ,s'M IMAYBE, CHECK MIGW LIMIT
M1 STaRT 1P M1, NOT IN RANGE
«PRINT sLINBUF JOX, PRINT LINE
B8R STaRT 160 GEY ANOTHER
ExITy JEXIT J18ACK TO MONITOR

PROMPT; ,ASCII /MY PROGAAM>/<208>

LINBUFy ,BLxB 82, JLINE BUFFER
«EVEN

<END STARY

.GVAL

2.4.21 .GVAL

This request returns a monitor fixed offset value in RO where it can
be accessed by the user. This request must be used in the XM monitor
to access monitor fixed offset locations, but it should also be used
in other RT-11 monitors. The .GVAL request is a read-only operation
and provides protection for information obtained from the monitor.

Macro Call: .GVAL area,offse

where: area is the address of a two-word EMT argument
block.
offse is the displacement from the beginning of the

monitor of the word to be returned in RO.

Request Format:

RO +area: 34 | o
offse
Errors:
Code Explanation
0 The offset requested 1is beyond the 1limits of the

resident monitor.

Example:

The following example demonstrates use of the .GVAL request by
getting the monitor version number and update number from the
resident monitor.

PROGRAMMED REQUESTS

oTITLE GraL,™MAC
JMCALL LGVYAL,JEXIT
UPLATE = 270 sCFFSET TQ “ONITOR
pvERSTON NUMBER

STAKT
sbvaL #AREA,sUPCATE g6ET MONITUR VERSIOAM
fNUMBER AND UPDATE
P IN R
»0vs R2,“ONVER $STORE VvERSIOr &
Swap R sUFCATE TO LO~ BYTE
»Cvb Ry »CNUPD 3STORL UPCATE =
JEXIT
MONVERS ,BL"3 s¥ONITOR VERSION &
MONUPDT ,BLKS ;“ONITOR UPDATE #
AREA} oBLKn 2
JENC STANT

.HERR/.SERR

2.4.22 .HERR/.SERR

.HERR and .SERR are complementary requests used to govern monitor
behavior for serious error conditions. During program execution,
certain error conditions can arise that cause the executing program to
be aborted (see Table 2-3). Normally, these errors cause program
termination with one of the ?MON- error messages. However, in certain
cases it is not feasible to abort the program because of these errors.
For example, a multi-user program must be able to retain control and
merely abort the wuser who generated the error. .SERR accomplishes
this by inhibiting the monitor from aborting the job. Instead, it
causes an error return to the offending EMT to be taken. On return
from that request, the carry bit 1is set and byte 52 contains a
negative value indicating the error condition that occurred. 1In some
cases (such as the .LOOKUP and ENTER requests), the .SERR request
leaves channels open.

.HERR turns off user error interception; it allows the system to
abort the job on fatal errors and generate an error message. (.HERR
is the default case.)

Macro Calls: .HERR
.SERR

Request Formats:

Ro= [4 o7

RO = 5[0]

Errors:

Table 2-3 contains a list of the errors that are returned if soft
error recovery 1is 1in effect. Traps to 4 and 10, and floating point

exception traps are not inhibited. These errors have their own
recovery mechanism.

PROGRAMMED REQUESTS

Table 2-3
Soft Error Codes (SERR)
Code Explanation
-1 Called USR from completion routine.
-2 No device handler; this operation needs one.
-3 Error doing directory 1/0.
-4 .FETCH error. Either an I/0 error
occurred while reading the handler, or tried to
load it over USR or RMON.
-5 Error reading an overlay.
-6 No more room for files in the directory.
-7 Illegal address (FB only); tried to perform
a monitor operation outside the job partition.
=10 Illegal channel number; number is greater
than actual number of channels which exist.
-11 Illegal EMT; an illegal function code has

been decoded.

2-68

PROGRAMMED REQUESTS

Example:

«TITLE MERR MAC
JTNIS EXAMPLE CAUSES A NORMALLY FATAL ERROR TO GENERATE ERRORS
184CK TO THE USER PROGRAM’ THE ERROR RETURNED I8 USED TO PRINT
JAN APPROPRIATE MESSAGE.

<MCALL oFETCM)oENTER) (HERR, , SERR

oMCALL oEXIT, PRINT

8T <SRN JTURN ON SOFTWARE ERROR
JRETURNS
«FETCH OHOLR,#PTR JGET A DEVICE MANDLER
(14} FCHERR
+ENTER SAREA,81,8PTR JOPEN A FILE ON CHANNEL 1
[14} ENERR
JHERR INOW PERMIT PIMeERRORS,
oEX1TY
FPCHERRy MOVE o882,R0 1WAl 1T paTaL
L L} FILERR IVES
+PRINT 8FNEC INOsoe NO DEVICE BY THAT NanE
JEXIT
ENERR; MmOV o882,R0
(1} FTLERR
+PRINT SENSG
JEXIT
FYLERR: NEG ‘7] JTHIS WILL TURN POSITIVE
okc L1 1ADJUST BY ONE
ASL (1) JMAKE IT AN INDEX
MOV TeL(PO), RO JPUT MESSAGE ADDRESS INTO RO
+PRINT JAND PRINT IT,
JEXIT
ToL?S L} SCAN'T OCCUR IN THIS PROGRAM
"2 INO DEVICE MANDLER IN MEMORY
") JOIRECTOPY 1/0 ERROR
Y} IFETCH ERROR
L] JIMPOSSIALE FOR THIS PROGRAM
“e INO ROOM IN DIRECTORY
“y JILLEGAL ADDRESS (F/B®)
ua SILLEGAL CMANNEL
LIY| JILLEGAL EMT
My JCAN'TY OCCUR IN THIS PROGRAM
oy +ASCIZ /NO DEVICE MANDLER/
"3 «ASCIZ SDIRECTORY 1/0 ERAOR"
LIY] «ASCI2 /ERROR DOING FETCH/
L1 Y] INOT APPLICABLE TO THIS PROGRAM
ey «ASCIZ /N0 ROOM IN DIRECTORY/
M7 .ASCIZ /ADDNESS CHNECK ERROR’/

wiey «ASCIZ /ILLEGAL CMANNEL/
LIRY «ABCIZ /ILLEGAL EMY/
FHEGy +ABCIZ /FETCH FAILED/
Em8Gy LASCI2 /ENTER FalLED/

EvEN
MOLRy .BLKW 308 JLEAVE 30@ (OCTAL) POR WAND_ER
PRy .MiDS® /DTes JOEVICE AND FILE NAME,

RaDBO /EXAMPL/
+RADSE® /mMaC/

AREA} DLW a4 JEMT AREA
+END [24

2-69

PROGRAMMED REQUESTS

.HRESET

2.4.23 (HRESET

This request stops all I/0 transfers in progress for the issuing job,
and then performs an .SRESET (see Section 2.4.54). (.HRESET is not
used to <clear a hard-error condition.) Note that in the SJ
environment, a hardware RESET instruction is used to terminate I/0,
while in a FB environment, only the I/0 associated with the job that
issued the .HRESET is affected. All other transfers continue.
Macro call: .HRESET
Errors:

None.
Example:

See the example for .SRESET for format.

INTEN

2.4.24 (INTEN
This request is used by user program interrupt service routines to:

l. Notify the monitor that an interrupt has occurred and to
switch to system state.

2. Set the processor priority to the correct value.

The .INTEN request is not an EMT monitor request but rather a
subroutine call to the monitor.

All external interrupts cause the processor to go to priority level 7.
.INTEN 1is used to lower the priority to the value at which the device
should be run. On return from .INTEN, the device interrupt can be
serviced, at which point the interrupt routine returns with an RTS PC.
It is very important to note that an RTI does not return correctly
from an interrupt routine that specifies an .INTEN.

Macro Call: L.INTEN prio[,pic]

where: prio is the processor priority at which the user
needs to run the interrupt routine, normally
the priority at which the device requests an
interrupt.

pic is an optional argument that should be
non-blank if the interrupt routine is written
as a PIC (position independent code) routine.
Any interrupt routine written as a device
handler must be a PIC routine and must use
this argument.

2-70

PROGRAMMED REQUESTS

Errors:
None.
Example:

See the example for .SYNCH.

.LOCK /.UNLOCK

2.4.25 .LOCK/.UNLOCK

.LOCK

The .LOCK request is used to keep the USR in memory for a series of
operations. If all the conditions that cause swapping are satisfied,
the part of the user program over which the USR swaps is written into
the system swap blocks (the file SWAP.SYS) and the USR is loaded.
Otherwise, the copy of the USR in memory is used, and no swapping
occurs. A .LOCK request always causes the USR to be loaded in memory
if it is not already in memory. The USR 1is not released until an
.UNLOCK request is given. (Note that in an FB system, calling the CSI
can also perform an implicit .UNLOCK.) A program that has many USR
requests to make can .LOCK the USR in memory, make all the requests,
and then .UNLOCK the USR; no time 1is spent doing unnecessary
swapping.

In a FB environment, a .LOCK inhibits the other Jjob from using the
USR. Note that the .LOCK request reduces time spent in file handling
by eliminating the swapping of the USR in and out of memory. .LOCK
causes the USR to be read into memory or swapped into memory. After a
.LOCK has been executed, an .UNLOCK request must be executed to
release the USR from memory. The .LOCK/.UNLOCK requests are
complementary and must be matched. That is, if three .LOCK requests
are issued, at least three .UNLOCKs must be done, otherwise the USR is
not released. More .UNLOCKs than .LOCKs can be issued without error.

Macro Call: .LOCK

Notes:

l. It is vital that the .LOCK call not come from within the area
into which the USR will be swapped. If this should occur,
the return from the .LOCK request would not be to the user
program, but to the USR itself, since the LOCK function
inhibits the user program from being re-read.

2. Once a .LOCK has been performed, it is not advisable for the
program to destroy the area the USR is in, even though no
further use of the USR is required. This causes
unpredictable results when an .UNLOCK is done.

3. If a foreground job performs a .LOCK request while the
background job owns the USR, foreground execution is
suspended until the USR is available. 1In this case, it is
possible for the background to lock out the foreground (see

the .TLOCK request).
Errors:

None.

2-71

PROGRAMMED REQUESTS

Example:

See the example following .UNLOCK.

.UNLOCK

The .UNLOCK request releases the User Service Routine (USR) from
memory if it was placed there with a .LOCK request. If the .LOCK
required a swap, the .UNLOCK loads the user program back into memory.
There 1is a .LOCK count. Each time the user does a .LOCK, the 1lock
count is incremented. When the user does an .UNLOCK, the lock count
is decremented. When it goes to 0, the user program is swapped back
in. See note 1.

Macro Call: .UNLOCK

Notes:

l. It is important that at least as many .UNLOCKs are given as
.LOCKs. If more .LOCK requests are done, the USR remains
locked in memory. It does no harm to give more .UNLOCKs than
are required; those that are extra are ignored.

2. The .LOCK/.UNLOCK pairs should be used only when absolutely
necessary when running two jobs in the FB system. When a job
.LOCKs the USR, the other job cannot wuse it wuntil it is
.UNLOCKed. Thus, the USR should not be .LOCKed
unnecessarily, as this can degrade performance in some cases.

3. In an FB system, calling the CSI with input coming from the
console terminal performs an implicit .UNLOCK.

4. It is especially important that the .UNLOCK not be in the
area that the USR swaps into. Otherwise, the request can
never be executed.

Errors:
None.
Example:

The following example tries to obtain as much memory as it can (with
the .SETTOP request). Most 1likely this does, in a background job,
make the USR non-resident (unless a SET USR NOSWAP command is done at
the keyboard), and swapping must take place for each .LOOKUP given.
Using the .LOCK, the USR is brought into memory and remains there
until the .UNLOCK is given.

The second .LOOKUP makes use of the fact that the arguments have
already been set up at LIST. Thus, it is possible to increment the
channel number, put in a new file pointer and then give a simple
.LOOKUP, which does not cause any arguments to be moved into LIST.

