I/0 PROGRAMMING CONVENTIONS

Example:
1 +TITLE ASYNCHRONOUS DIRECTORY OPERATION REQUEST EXAMPLE X01.01
!
3 +MCALL .LOOKUP+.SPFUN/+.CLOSE» .PRINT, .EXIT
4
S sDEF INITIONS
é
7 000000
8
9 177754 ASYREQ = -20. $ASYNCHRONOUS REQUEST CODE
10 000003 LOOKUF = 3 $LOOKUP CODE FOR ASYNCHRONOUS REQUEST
11 000004 ENTER = 4 JENTER CODE FOR ASYNCHRONOUS REQUEST
12 000000 CHAN = /] +USE CHANNEL O
13 000001 FNF = 1 $FILE NOT FOUND ERROR
14 000000 FSN = 0 $USE O FOR FILE SEQUENCE NUMBER
13
16 IMACTAPE HANDLER IS ASSUMED TO BE LOADED.
17
18 000000 START, .LOOKUP $AREA»8CHAN> ONFSBLK $0FEN A CHANNEL FOR THE NEXT REQUEST
19 000024 103433 BCS LOOKER $ERROR OCCURRED
20 000026 +SPFUN OAREA»$CHAN»SASYREQ» $COMBLK » » SERRBLK #DO A LOOKUF
21 000074 103012 BCC FOUND #NO ERRORS MEANS FILE WAS FOUND
22
23 000076 G22767 000001 000104 CHP S$FUF yERRBLK $FILE NOT FOUND ERROR?
24 000104 001411 BEQ NOTF IND iYES
25 000106 012700 000320° MOV SASYERR,»RO $NO
26 000112 000410 BRR CLOSE
27
28 000114 012700 000220° LIOrRER: MOV $LOOERR,RO iNFS »LOOKUF ERROR
29 000120 000405 DR CLOSE
30
31 000122 012700 000264° FIUND: MOV $0K/,RO #FILE FOUND MESSAGE
32 000126 000402 BR CLOSE
33
34 000130 012700 000300° NITFND: MOV ®NOK »RO $FILE NOT FOUNID' MESSAGE
33
36 000134 CLOSE: .PRINT #PRINT MESSAGE POINTED TO BY RO
37 000136 «CLOSE $CHAN
38 000144 JEXIT
39
40 1DA"A AREA
41
42 000146 AREA: +BLKW) +EMT ARGUMENT AREA
43 000162 032140 NFSBLK: .RADSO /MT/ $USE THIS TO OPEN MAGTAPE NON FILE STRUCTURED
44 000164 000000 000000 000000 +WORD 0+0+0
45 000172 023364 0353665 100370 COMBLK: .RADSO /FILNAMTYP/ $THIS IS THE FILE NAME WE’'RE LOOKING FOR
46 000200 000003 +WORD LOOKUF $THIS IS THE ASYNCHRONOUS OPERATION COLE FOR LOORNUF
47 000202 000000 «WORD FSN iTHIS 1S THE FILE SEQUENCE NUMEBER FOR THE LOOKUF
48 000204 000000 000000 +WORD 0:0 $RESERVED (MUST BE ZERO)
49 000210 000000 000000 00C000 ERRBLK: .WORD 0+0+0+0 #PICK UF ERRORS HERE
000216 000000
S0
51 i MESSAGE AREA
52
53 000220 116 117 116 LOOEKRR: .ASCIZ 'NON FILE STRUCTURED .LOOKUF FAILED.’
54 000264 106 111 114 OK? +ASCIZ ‘FILE FOUND.’
55 000300 106 111 114 NOK: .ASCIZ 'FILE NOT FOUND.’
56 000320 101 123 131 ASYERR: .ASCIZ ‘ASYNCHRONOUS REQUEST ERROR.’
57
58 000000 +END START

Hardware Handler Functions

The hardware handler functions can be used with or without the file
structure module.

1.

Issuing hardware handler calls in a magtape file

The magtape handler is designed to perform two distinct types
of access. One type of access 1is file oriented and it
attempts to make the magtape act 1like a disk; in other
words, to make the magtape device be as device independent as
possible. The other type of access allows access to the
hardware commands such as read, write, space, etc., but the
user doesn't have to know whether the magtape is a TM1l1l or
TJU16.

When accessing magtape using file oriented commands, the
handler keeps track of the file sequence number where the
tape is positioned. Tape movement during file searches can
be optimized.

When accessing data in a magtape file using the .READx/.WRITx
requests, the magtape handler keeps track of the current
block number as well as the 1last block number accessible.
The block number argument can be used to simulate a random
access device even on .ENTERed files.

1-39

I/0 PROGRAMMING CONVENTIONS

The two access methods described above can be combined; that
is, it is possible to use hardware handler tape movement
commands on a magtape file. However, doing so causes the
following to happen.

a. When the first hardware handler command is received, the
stored file sequence number and block number information
described above are erased and are not reinitialized
until a .CLOSE and another file opening command have been
performed. Note that the .CLOSE moves and, 1in the
.ENTERed file case, writes the tape no matter what
commands have been issued since the file was opened.
Also note that the tape will no longer be an ANSI
compatible tape. When the file is .CLOSEd, the magtape
handler can't write out the size of the file because the
file size is lost to the handler. It writes out a zero

in its place. The file seguence number field will be
correct.

b. The only exception to the above rule 1s when the user
wishes to open the tape as file structured and write data
blocks that are not the standard 512 (decimal) byte size
that KT-11 magtape .WRITx commands use. The magtape
handler keeps track of the number of blocks written and
the end-of-file 1 1label are correct as long as no
commands other than the .SPFUN write command are used.
Otherwise, the block size will be lost.

€. It is recommended that the user issue .SPFUN commands to
a magtape file only for the case described in b. above.

Exception Reporting - Those .SPFUN's that are accepted by the
hardware handler report end of file and hard error conditions
through byte 52 in the system communication area.
Additionally, they use the argument normally used for a block
number as a pointer to a four-word error and status block to
return qualifying information about exception conditions.
When the block number argument is o, no qualifying
information is returned. Note that the contents of these
words are undefined when no exception conditions have
occurred (carry bit not set). The block is defined as
follows:

Words 1 and 2 are qualifying information.
Words 3 and 4 are reserved, and must be set to 0.

a. Qualifying information returned for the end of file
condition is as follows:

Code (Octal) Condition
Word 1: 1 Tape at end of file only (tape mark
detected)
2 Tape at end of tape only (no tape

mark detected)

3 Tape at end of tape and end of file
(tape mark detected)

4 Tape at beginning of tape (no tape
mark detected)

1-40

1/0 PROGRAMMING CONVENTIONS

When a tape mark is detected during a spacing operation,
the number of blocks not spaced is returned in the second
word.

End of tape, tape mark and beginning of tape are returned
as an end of file by the hardware handler.

b. Qualifying information returned for the hard error
condition is as follows:

gggg_(OCtal) Condition
Word i: 0 No additional information
1 Tape drive not available
2 Tape position lost. When this

error occurs, the tape should be
rewound or backspaced to a known

position.
3 Nonexistent memory accessed
4 Tape write-locked.
5 Last block read had more

information. The MM handler will
return the number of words not read
in the second word.

6 Short block was read (the
differences between the number of
bytes (not words) requested and the
number of bytes read is returned in
the second word).

c. The hardware handler issues a hard error if it receives
any request other than .LOOKUP (non-file-structured),

.CLOSE, or any .SPFUN request not defined for the
hardware handler.

d. When running under the XM monitor the blk area for error
reporting must be mapped at all times.

Read/Write Physical Blocks of Any Size - The hardwarehandler
reads and writes blocks of any size. Requests for reading
and writing a variable number of words are implemented with
two .SPFUN codes.

a. The .SPFUN request to read a variable number of words 1in
a block has the following form:

.SPFUN area,chan,#370,buf,wcnt,blk{,crtn]

where: 370 is the function code for a read
operation
blk is the address of a four-word error

and status block used for returning
the exception conditions.

crtn is an optional argument that specifies

a completion routine is to be entered
after the request is executed.

1-41

I/0 PROGRAMMING CONVENTIONS

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) Tape 1is at end of file only (tape
Value=0 mark detected) if bit 0o is set.
Tape is at end of tape only (no tape
mark detected) if bit 1 is set.
Tape is at end of tape and end of
file (tape mark detected) if bits 0,1
are set.

Hard Error No additional information (Code=0)
(Value=1)

Tape drive is not available (Code=1)
Tape position lost (Code=2)
Nonexistent memory accessed (Code=3)

Short block was read. The difference
between the number of words requested
and the number of words read is
returned in the second word of blk
(Code=6) .

The last block read had more
information. For the TJUl6 the
number of words not read is returned
in the second word of blk (Code=5).

The .SPFUN request to write a variable number of words
to a block has the following form:

«SPFUN area,chan,#37l,buf,wcnt,blk[,crtn]

where: 371 is the function code (decimal) for a
write operation.

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 Error Qualifying Information

EOF (end of file) Tape is at end of tape only if
(Value=0) bit 1 is set.

Hard error No additional information (Code=0)
(Value=1) Tape drive not available (Code=1)

Tape position lost (Code=2)
Nonexistent memory accessed (Code=3)
Tape is write locked (Code=4)

NOTE

The TJU16 tape drive can return
a hard error if a write request
with a word count less than 7 is
attempted.

1-42

1/0 PROGRAMMING CONVENTIONS

space Forward/Backward - The hardware handler accepts a
command that spaces forward or backward block-by-block or
until a tape mark is detected. When a tape mark is detected,
the handler reports it along with the number of blocks not
skipped. These commands can be used to issue a space-to-tape
mark command by passing a number greater than the maximum
number of blocks on a tape. The tape 1is left positioned
after the tape mark or the last block passed. There are two
spacing requests, which have the following forms:

a. Space forward by block
.SPFUN area,chan,#376,,wcnt,blk[,crtn]

where: 376 is the function code for forward space
operation.

wcnt is the number of blocks to space past
(cannot exceed 65,534).

crtn is a completion routine to be entered when
the operation is complete.

This request returns the following errors. Additional
qualifying information for these errors is returned in
the first two words of the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) Tape is at end of file only (tape
mark detected) if bit 0 is set
Tape is at end of tape only (no tape
mark detected) if bit 1 is set
Tape is at end of tape and end of
file (tape mark detected) if pits 0,1
are set

The second word in blk contains the number of blocks
requested to pbe spaced (went) minus the number of blocks
spaced if a tape mark is detected. Otherwise its value
is not defined.

Hard error No additional information (Code=0)
Tape drive not available (Code=1)
Tape position lost (Code=2)

NOTE
Due to hardware restrictions it 1is
recommended that no forward space
commands be issued if the reel 1is
positioned past the end of tape
marker.
b. Space backward by block:
.SPFUN area,chan,#375,,wcnt,blk[,crtn]

where: 375 is the function code for a backspace
operation.

I/0 PROGRAMMING CONVENTIONS

This request returns the following errors and additional
qualifying information is returned in the first two
words of the blk argqument block.

Byte 52 error Qualifying information

EOF (end of file) Tape is at end of file (tape mark
detected) if bit 0 is set
Tape is at end of tape (no tape mark
detected) if bit 1 is set
Tape is at end of tape and end of
file (tape mark detected) if bit 0,1
are set
Tape is at beginning of tape (no tape
mark detected) if bit 2 is set

The second word in blk contains the number of blocks
requested to be spaced (wcnt) minus the number of blocks
actually spaced (including the tape mark) if a tape mark
is detected. Otherwise, its value is not defined.

Hard error No additional information (Code=0)
Tape drive not available (Code=1)
Tape position lost (Code=2)

Rewind - The handler accepts a rewind command, and rewinds
the tape drive to the beginning of tape. The handler cannot
accept other requests until the rewind operation is complete,
but other handlers can be active during tape rewind. The
rewind request has the following format:

.SPFUN area,chan,#373,,,blk[,crtn]

where: 373 is the function code for the rewind
operation.

crtn is a completion routine to be entered
when the operation is complete.

This request returns the following error, and additional
qualifying information is returned in the blk arqument block.

Byte 52 error Qualifying information

Hard error No additional information (Code=0)
Tape drive not available (Code=1)

Rewind and Go Off Line - This request is the same as rewind
except that it takes the tape drive off-line, and then
rewinds to the beginning of tape. The handler is free to
accept commands after the rewind is initiated. The rewind
and go off-line request has the following format:

.SPFUN area,chan,#372,,,blk[,crtn]

where: 372 is the function code for the rewind
and go off-line operation.

crtn

This request returns the same error codes and qualifying
information as the rewind request.

1-44

9.

1/0 PROGRAMMING CONVENTIONS

Write wWith Extended Gap - This request allows writing on
tapes with bad spots. This request is identical to the write
request except that the function code for write with extended
gap operation is 374.

The errors for this request are identical to those for the
write request.

Write Tape Mark - The hardware handler accepts a request to
write a tape mark. This request has the following format:

.SPFUN area,chan,#377,,,blk[,crtn]

where: 377 is the function code for the write
tape mark operation.

This request returns the following errors: Additional
qualifying information is returned in the first two words of
the blk argument block.

Byte 52 error Qualifying information

EOF (end of file) End of tape is detected if bit 1
is set.

Hard error No additional information (Code=0)
Tape drive not available (Code=l)
Tape position lost (Code=2)
Tape is write locked (Code=4)

Error Recovery Algorithm - Any errors detected during spacing
operations cause the recovery attempt to be aborted and a
hard (position) error is reported.

a. Read Error Recovery = The hardware handler performs the
following algorithm if a read parity error is detected.

1. Backspaces over the block and rereads. When
unsuccessful it is repeated until five read commands
have failed.

2. Backspaces five blocks, spaces forward four blocks,
then reads the record.

3. This entire sequence (steps 1 and 2) is repeated

.

eight times or until the block is read successfully.

b. Wwrite Error Recovery - The hardware handler performs the
following algorithm upon detection of a read after write
parity error.

1. Backspaces over one block.

2. Erases three inches of tape and rewrites the block.
In no case is an attempt made to rewrite the block
over the bad spot, since, even if successful, the
block could be marginal and cause problems at a
later time.

3. If the read after write still fails, the entire
sequence (steps 1 and 2) are repeated. When 25 feet
of erased tape have been written, a hard error is
given.

1-45

10.

11.

12.

13.

I/0 PROGRAMMING CONVENTIONS

Non-File-Structured .LOOKUP Request - The hardware handler
accepts a non-file-structured .LOOKUP request. This function
is necessary to open a channel to the device before any I/0
operations can be executed. It causes the hardware handler
to mark the drive busy so that no other channel can be opened

to that drive until a .CLOSE is performed. This request has
the following form:

. LOOKUP area,chan,dblk,segnum

where: segnum is an argument that specifies whether
the tape 1is to be rewound or not.
When this argument is U, the tape is
rewound. When this argument is -1,
the tape is not rewound.

This request returns the following errors.

Byte 52 code Meaning
0 or1l Not meaningful for this request.
2 Device in use. The drive being accessed
is already attached to another channel.
3 Tape drive not available.
4 Illegal argument detected. The file

name was not 0 or the seqnum had an
argument that was not 0 or -1.

.CLOSE Request - The hardware handler accepts the .CLOSE
request and causes the handler to mark the drive as
available. This request has the following form:

.CLOSE chan

SET Commands - The hardware handler accepts SET commands to
set the track number, density and parity of the tape drive.
These commands are fully described in Chapter 4 of the RT-11
System User's Guide.

Non-File-Structured .WRITx Request - The hardware handler
accepts .WRITx requests that write a variable number of words
to a block on tape. The block number field is ignored. This
request has the following form:

.WRITx area,chan,buf,went[,,crtn]

This request returns the following errors. Note that no
additional qualifying information is available.
Byte 52 error Meaning
EOF (end of file) The end of tape marker has been
(Value=0) sensed.
Hard error This can mean any of the error
(Value=1) conditions listed for the

file-structured write request.

1-46

1/0 PROGRAMMING CONVENTIONS

14. Non-File—Structured .READx Request - This reguest reads a
variable number of words from a block on tape. It ignores
the end of tape marker and only reports end of file when a

tape mark is read. The block number field is ignored. The
request has the following form:

.READX area,chan,buf,wcnt[,,crtn]

This request returns the following errors. Note that there
is no additional qualifying information available.

Byte 52 error Meaning

EOF (end of file) Only reported if a tape mark is read.
(Vvalue=0) The end of tape marker will not cause
end of file.

Hard error This can mean any of the error
(value=1) conditions listed for the
file-structured read request.

Writing Tapes On Oother PDP-11 Operating Systems To Be Read By RT-11

RT-11 can read files written on other computer systems that support
the DIGITAL standard (ANSI) for labels. Below are a few examples of
how to write ANSI tapes on some common DIGITAL pDP11 operating
systems. Keep in mind that there are other factors involved besides
just the label and format compatibility. These include density,
parity and number of tracks written on the tape.

writing Tapes on RSTS/E

RSTS/E supports two types of magtape formats, DOS-11 and ANSI. In the
following examples, dd represents the magtape handler name, either MM
or MT. 1In order to ensure that an ANSI file structure is written, Dbe
sure to issue the following command:

ASSIGN ddn:.ANSI (Allocates the device to the job and
ensures that an ANSI file structure is
used)

RUN S$PIP ddn:/ZE/VID:XXXXXX (PIP is used to initialize the
tape; XXXXXX is the volume 1D)

Really zero ddn:? Yes (PIP prompts before initializing the
tape)

PIP ddn:=FARQUA.MAC,VBG.TEC (PIP is used to copy files to the tape

DEASSIGN ddn: (Deallocates the device)

writing Tapes on RSX-11/M

RSX-11/M needs the following commands to access a magtape.

ALL ddn: (Allocates a drive)

INIT ddn:RT11 (Initializes the tape and gives the name "RT11l" as
the volume identifier)

MOU ddn:RT11 (Mounts the tape volume)

PIP ddn:=[l3,10]FllPRE.MAC,ALLOC.MAC (Copies files to the tape)

DMO ddn:RT11 (Dismounts the tape volume)

DEA ddn: (Deassigns the drive)

Writing Tapes on RSX-11/D and IAS

INIT ddn:RT11 (Initializes the tape ard gives the name "RT11" as
the volume identifier)
MOU ddn:RT11l (Mounts a tape volume)

1-47

I/0 PROGRAMMING CONVENTIONS

(For RSX-11/D use the PIP program to write files to the tape)
(For IAS use the COPY command)

DMO ddn:RT11 (Dismounts the tape volume)

The above examples are intended only as examples. For more complete
information on the above systems consult the appropriate
documentation.

The contents of files written under the RSX-11 and IAS systems do not
necessarily correspond to those types of data files under RT-11. For
example, under RT-11 text files consist of stream ASCII data (carriage
return and line feed characters are imbedded in the text) whereas the
other systems just mentioned use a different type of character
storage. The wuser is urged to pay special attention to the contents
of the files he wishes to transfer.

When writing files to be read under RT-11, the only block size the
RT-11 PIP program reads is 512(decimal) characters/block. However,
the RT-11 DIR program produces a directory for any compatible tape.

1.4.8.2 Cassette Tape Handler (CT) - The CT handler can operate in
two modes: hardware mode and software mode. These names refer to the
type of operation that can be performed on the device at a given time.
Software mode is the normal mode of operation used when accessing the
device through any of the RT-11 system programs. In software mode,
the handler automatically attends to file headers and uses a fixed
record length of 64 words to transfer data.

Hardware mode allows the user to read or write any format desired,
using any record size. In this mode, the word count is taken as the
physical record size.

When the handlers are initially loaded by either the .FETCH programmed
request or the LOAD command, only software functions are permitted.
To switch from software to hardware mode, either a rewind or a
non-file-structured .LOOKUP must be performed. (A non-file-structured
.LOOKUP is a .LOOKUP in which the first word of the file name is
null.)

In software mode, the following functions are permitted:

.ENTER - Open new file for output

. LOOKUP ~ Open existing file for input and/or output

.DELETE - Delete an existing file on the specified device.

.CLOSE - Close a file that was opened with .ENTER or
. LOOKUP

.READ/.WRITE - Perform data transfer requests

In .ENTER, .LOOKUP, and .DELETE an optional file count parameter can
be specified. Its meaning is as follows:

Count Argument Meaning
=0 A rewind is done before the operation.
>0 No rewind is done. The value of the count is

taken as a 1limit of how many files to look at
before performing the operation (for example, a
count of 2 looks at two files at most. A count
of 1 looks at only the next file).

1-48

1/0 PROGRAMMING CONVENTIONS
<0 A rewind is done. The absolute value of the
switch is then used as the limit.

If the file indicated in the request is located before the 1limit is
exhausted, the search succeeds at that point.

As an example, consider:

.LOOKUP #AREA,#0,#PTR,#5

BCS Al
AREA: .BLKW 10.
PTR: .RAD50 /CTO/

.RAD50 /EXAMPLMAC/

In this case, the file count argument is +5, indicating that no rewind
is to be done and that CTO is to be searched for the indicated file
(EXAMPL.MAC) . 1f the file is not found after four files have been
skipped, or if an end-of-tape occurs in that space, the search is
stopped, and the tape is positioned either at the end of tape (EOT) or
at the start of the fifth file. If the named file is found within the
five files, the tape is positioned at its start. If the end of tape
is encountered first, an error is generated.

As another example:
.LOOKUP $AREA, #0,#PTR,#-5

This performs a rewind, and then uses a file count of five in the same
way the previous example does.

Handler Functions - The cassette handler performs the following
functions:

1. .LOOKUP Request

If the file name (or the first word of the file name) is
null, the operation is considered to be a non-file-structured
_LOOKUP. This operation puts the handler into hardware mode.

A rewind is automatically done in this case.

I1f the file name is not null, the handler tries to find the
indicated file. .LOOKUP uses the optional file count as
illustrated above. Only software functions are allowed.

2. .DELETE Request

.DELETE eliminates a file of the designated name from the
device. .DELETE also uses the file count argument, and can
thus do a delete of a numbered file as well as a delete by
name . When a file 1is deleted, an unused space is created
there. However, it is not possible to reclaim that space, as
it is when the device is random access. The unused spot
remains until the volume is re-initialized and rewritten. If
a file name is not present, a non-file-structured .DELETE is
performed and the tape is zeroed.

3. .ENTER Request

The .ENTER reguest creates a new file of the designated name
on the device. This request uses the optional file count,
and can thus enter a file by name or by number. If enter by
name is done, the handler deletes any files of the same name.

I/0 PROGRAMMING CONVENTIONS

If enter by number is done, the indicated number of files is
skipped, and the tape is positioned at the start of the next
file.

NOTE

Care must be exercised in performing
numbered .ENTERs, as it is possible to
enter a file in the middle of existing
files and thus destroy any files from
the next file to the end of the tape.

It is also possible to create more than
one file with the same name, since
-ENTER only deletes files of the same
name it sees while passing down the
tape. If an .ENTER is done with a count
greater than 0, no rewind is per formed
before the file is entered. If a file
of the same name is present at an
earlier spot on the tape, the handler
cannot delete it. A non-file-structured
-ENTER performs the same function as a
non-file-structured .LOOKUP but does not
rewind the tape. Since both functions
allow writing to the tape without regard
to the tape's file structure, they
should be used with care on a
file-structured tape.

.CLOSE Requests

-CLOSE terminates operations to a file on cassette and resets
the handler to allow more -LOOKUPs, .ENTERs, or .DELETEs. If
a .CLOSE is not performed on an entered file, the end of tape
label will be missing and no new files can be created on that
volume. In this case, the last file on the tape must be
rewritten and closed to create a valid volume.

-READ/.WRITE Requests

-READ and .WRITE requests are unique in that they can be done
either in hardware or software mode. 1In software mode (file
opened with .LOOKUP or -ENTER), records are written in a
fixed size (64 words). The word count specified in the
operation is translated to the correct number of records. On
a .READ, the wuser buffer is filled with zeroes if the word
count exceeds the amount of data available.

Following is a discussion of how the various parameters for
.READ/.WRITE are used.

a. Block Number
Only sequential operations are performed. If the block

number is 0, the cassette is rewound to the start of the
file. Any other block number is disregarded.

1/0 PROGRAMMING CONVENTIONS

b. Word Count

If the word count is 0, the following conditions are
possible:

If the block number is non-zero, the operation Iis
actually a file name seek. The block number is
interpreted as the file count argument, as discussed in
the example of .LOOKUP. The buffer address should point
to the Radix-50 equivalents of the device and file to be
located. This feature essentially allows an asynchronous
.LOOKUP to be performed. The standard .LOOKUP request
does not return control to the user program until the
tape is positioned properly, whereas this asynchronous
version returns control immediately and interrupts when
the file is positioned.

The user can then do a synchronous, positively numbered
.LOOKUP to the file just positioned, thus avoiding a long
synchronous search of the tape.

If the block number is 0, a cyclical redundancy check
error occurs.

Following is a description of the allowed hardware mode functions for
the handler, as well as examples of how to call them. In general,
special functions are called by using the .SPFUN request; examples of
usage follow each function. The special functions require a channel
number as an argument. The channel must initially be opened with a
non-file-structured .LOOKUP, which places the handler in hardware
mode.

The general form of the .SPFUN request is:
.SPFUN area,chan,func,buf,wcent,blk,crtn
where:
func is the function code to be performed.
The request format is:
RO area: 32 chan
blk
buf
wcnt
func 377
crtn
Cassette Special Functions
1. Rewind (Code = 373) - This request rewinds the tape to load
point. This puts the unit in hardware mode in the same
manner as a non-file-structured .LOOKUP where any of the
other functions can be done. Unless a completion routine is
specified, control does not return to the user until the
rewind completes. This request has the following form:
.SPFUN area,#0,#373,#0,#0,%#0,crtn
where: crtn is a completion routine to be entered when

the operation is complete. The other arguments
are not required.

1-51

I/0 PROGRAMMING CONVENTIONS

2. Last File (Code = 377) - This request rewinds the cassette
and positions it immediately before the sentinel file
(logical end-of-tape). The request form is the same as for
rewind except that code 377 is used.

.SPFUN area,#0,#377,#0,#0,#0([,crtn]
3. Last Block (Code = 376) - This request rewinds one record.
.SPFUN area,#0,#376,#0,#%0,#0(,crtn]

4. Next File (Code = 375) - This request spaces the cassette
forward to the next file.

.SPFUN area,#0,#375,40,#0,%#0[,crtn]

5. Next Block (Code = 374) - This request spaces the cassette
forward by one record.

.SPFUN area,#0,#374,40,#%0,#0[,crtn]

6. Write File Gap (Code = 372) - This request terminates a file
written by the user program when in hardware mode.

Sample Macro Call:
.SPFUN area,#0,#372,#0,#0,4#0

This writes a file gap synchronously, while:
.SPFUN area,#0,#372,#0,#0,40,#1

or

.SPFUN area,#0,#372,#0,%0,40,crtn
performs asynchronous write file gap operations.

Cassette End-of-File Detection - Since cassette is a sequential
device, the handler for this device cannot know in advance the number
of blocks in a particular file, and thus cannot determine if a
particular read request is attempting to read past the end of file.
User programs can use the following procedures to determine if the

handler has encountered end of file in either software or hardware
mode.

In software mode, if end of file is encountered during a read and some
data is read the cassette handler will zero fill the rest of the
buffer and return to the caller. The next read attempted on that
channel returns with the carry bit set and with the error byte
(absolute location 52) set to indicate an attempt to read past
end-of-file.

In hardware mode, the cassette handler does not report end of file as
it does in software mode. The best way that user programs can
determine if a cassette read has encountered a file gap 1is to check
the device status registers after each hardware mode read is complete.

1-52

I1/0 PROGRAMMING CONVENTIONS

Example:
TACS=177500 $TA11 CONTROL AND STATUS REGISTER
TAEOF=4000 EOF RIT IN TACS
TAEOQT=20000 $EOT RIT IN TACS
JREADW #AREA»#CHNL » $BUFF y #400» BLKNUM iREAD FROM CT
BCS EMTERR $ TEST ERRORS
TST P4#TACS $ERROR RIT SET IN TACS?
BFL NOERR $IF PL - NO
RIT $TAEOF y@#TACS $YES - WAS IT END OF FILE?
BRNE EOF $IF NE - YES
EOF? $CASSETTE END OF FILE ENCOUNTERED

1f desired, both the EOF and EOT bits could be checked:
BIT $MTSEOF+MTSEQT »@#MTS MT EOF OR EOT?

or

BIT $TAEOF+TAEOT,»@$#TACS CT EOF OR EOT?

1.4.8.3 Diskette Handlers (DX,DY) - The .SPFUN request permits
reading and writing of absolute sectors on the diskettes. The DY
handler accepts an additional .SPFUN request to determine the size, in
256-word blocks, of the volume mounted in a particular unit. On
double density diskettes, sectors are 128 words long. RT-11 normally
reads and writes them in groups of two sectors. On single density
diskettes, sectors are 64 words long. RT-11 normally reads and writes
them in groups of four sectors. Sectors can be accessed individually
through the .SPFUN request. The format of the request is as follows:

.SPFUN area,chan,code,buf,wcnt,blk,crtn

where:

code is the function to be performed:
377 Read physical sector
376 write physical sector
375 Write physical sector with deleted data mark
374 unused
373 (DY only) determine device size, in 256-word

blocks, of a particular volume
buf for functions 377, 376, 375:

is the location of a 129-word buffer (for double density
diskettes) or a 65-word buffer (for single density
diskettes). The first word of the buffer, the flag word,
is normally set to 0.

I1f the first word is set to 1, a read on a physical
sector containing a deleted data mark is indicated. The
actual data area of the buffer extends from the second
word to the end of the buffer.

1-53

I/0 PROGRAMMING CONVENTIONS

for function 373:

buf is the location of a one-word buffer in which the
size of the volume in the specified unit is returned.
(For single density diskettes, 494 (decimal) is returned.
For double density diskettes, 988 (decimal) is returned.)

wcnt for functions 377, 376, 375:

is the absolute track number, 0 through 76, to be read or
written.

for function 373:
wcnt is unused and should be set to 1.

blk for functions 377, 376, 375:
is the absolute sector number, 0 through 26, to be read
or written.

for function 373:
blk is unused and should be set to (.

The diskette should be opened with a non-file-structured .LOOKUP.
Note also that the buf, wcnt, and blk arguments have different
meanings when used with diskettes.

Sample Macro Call:

-SPFUN #RDLIST,#1,#377,#BUFF,#0,47,%0
s PERFORM A
: SYNCHRONOUS SECTOR READ
;FROM TRACK 0, SECTOR 7
;7 INTO THE 65-WORD AREA BUFF

Each DX and DY handler can support two controllers, and each
controller supports two drives. For example, if the RX01l handler is
SYSGENed to support two controllers, it will support four devices:
DX0, DX1, DX2 and DX3. DX0 and DXl are drives 0 and 1 of the standard
diskette at vector 264 and CSR 177170. DX2 and DX3 are drives 0 and 1
of the other controller. Note that only one I/0 process can be active
at one time even though there are two controllers. There 1is no
overlapped I/0 to the handler.

1.4.8.4 Card Reader Handler (CR) - The card reader handler can
transfer data either as ASCII characters in DEC 026 or DEC 029 card
codes (see Table 1-3) or as column images controlled by the SET
command. In ASCII mode (SET CR NOIMAGE), invalid punch combinations
are decoded as the error character 134 (octal)--backslash. In IMAGE
mode, no punch combination is invalid; each column is read as 12 bits
of data right-justified in one word of the input buffer. The handler
continues reading until the transfer word count is satisfied or until
a standard end-of-file card is encountered (12-11-0-1-6-7-8-9 punch in
column 1; the rest of the card is arbitrary). On end-of-file, the
buffer is filled with zeroés and the request terminates successfully;
the next input request from the card reader gives an end-of-file
error. Note that if the transfer count is satisfied at a point that
is not a card boundary, the next request continues from the middle of
the card with no loss of information. If the input hopper is emptied
before the transfer request is complete, the handler hangs until the
hopper is reloaded and the "START" button on the reader is pressed
again. The transfer then continues until completion or until another
hopper empty condition exists. End-of-file is not reported on the
hopper empty condition. The handler hangs if the hopper empties
during the transfer regardless of the status of the SET CR HANG/NO

1-54

1/0 PROGRAMMING CONVENTIONS

HANG option. No special action is required to use the card reader
handler with the CM 11 mark sense card reader. The program should be
aware of the fact that mark sense cards can contain less than 80
characters. Note also that when the CR handler is set to CRLF or TRIM
and is reading in IMAGE mode, unpredictable results can occur.

Table 1-3
DEC 026/DEC 029 Card Code Conversions
Zone Digit Octal Character Name
none
none 040 SPACE
1 061 1 digit 1
2 062 2 digit 2
3 063 3 digit 3
4 064 4 digit 4
5 065 5 digit 5
6 066 6 digit 6
7 067 7 digit 7
12
(DEC 029) none 046 & amper sand
(DEC 026) 053 + plus sign
1 101 A upper case A
2 102 B upper case B
3 103 C upper case C
4 104 D upper case D
5 105 E upper case E
6 106 F upper case F
7 107 G upper case G
11
none 055 - minus sign
1 112 J upper case J
2 113 K upper case K
3 114 L upper case L
4 115 M upper case M
5 116 N upper case N
6 117 (0] upper case O
7 107 P upper case P
0
none 060 0 digit 0
1 057 / slash
2 123 S upper case S
3 124 T upper case T
4 125 U upper case U
5 126 v upper case V
6 127 W upper case W
7 130 X upper case X
8
none 70 8 digit 8
1 140 h accent grave
(DEC 029) 2 072 : colon
(DEC 026) 137 _ backarrow
(underscore)
(DEC 029) 3 043 # number sign
(DEC 026) 075 = equal sign
4 100 Q commercial "at"
(DEC 029) 5 047 ' single quote
(DEC 026) 136 - uparrow
{ (circumflex)

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
(DEC 029) 6 075 = equal sign
(DEC 026) 047 ' single quote
(DEC 029) 7 042 " double quote
(DEC 026) 134 \ backslash
9
none 071 9 digit 9
2 026 CTRL/V SYN
7 004 CTRL/D EOT
12-11
none 174] vertical bar
1 152 j lower-case J
2 153 k lower-case K
3 154 1 lower-case L
4 155 m lower-case M
5 156 n lower-case N
6 157 o lower-case 0
7 160 P lower-case P
12-0
none 173 { open brace
1 141 a lower-case A
2 142 b lower-case B
3 143 c lower-case C
4 144 d lower-case D
5 145 e lower-case E
6 146 b lower-case F
7 147 g lower-case G
12-8
none 110 H upper-case H
(DEC 029) 2 133 [open sqguare bracket
(DEC 026) 077 ? question mark
3 056 . per iod
(DEC 029) 4 074 < open angle bracket
(DEC 026) 051) close parenthesis
(DEC 029) 5 050 (open parenthesis
(DEC 026) 135] close square bracket
(DEC 029) 6 053 + plus sign
(DEC 026) 074 < open angle bracket
7 041 ! exclamation mark
12-9
none 111 I upper-case 1
1 001 CTRL/A SOH
2 002 CTRL/B STX
3 003 CTRL/C ETX
5 011 CTRL/I HT
7 177 DEL
11-0
none 175 } close brace
1 176 ~ tilde
2 163 s lower-case S
3 164 t lower-case T
4 165 u lower-case U
) 166 v lower-case V
6 167 w lower-case W
7 170 x , lower-case X
I

1-56

(continued on next page)

I1/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
11'8 i
none 121 Q upper-case Q
(DEC 029) 2 135] close square bracket
(DEC 026) 072 : colon
3 044 $ currency symbol
4 052 * asterisk
(DEC 029) 5 051) close parenthesis
(DEC 026) 133 [open square bracket
(DEC 029) 6 073 : semi-colon
(DEC 026) 076 > close angle bracket
(DEC 029) 7 136 - uparrow
(circumflex)
(DEC 026) 046 & amper sand
11-9
none 122 R upper-case R
1 021 CTRL/Q DC1
2 022 CTRL/R DC2
3 023 CTRL/S DC3
6 010 CTRL/H BS
0-8
null 131 Y upper-case Y
(DEC 029) 2 134 \ backslash
(DEC 026) 073 ; semi-colon
3 054 ’ comma
(DEC 029) 4 045 % percent sign
(DEC 026) 050 (open parenthesis
(DEC 029) 5 137 _ backarrow
(underscore)
(DEC 026) 042 " double gquote
(DEC 029) 6 076 > close angle bracket
(DEC 026) 043 3 number sign
(DEC 029) 7 077 ? question mark
(DEC 026) 045 % percent sign
0-9
null 132 Z upper-case 2
5 012 CTRL/J LF
6 027 CTRL/W ETB
7 033 ESC
9-8
4 024 CTRL/T DC4
5 025 CTRL/U NAK
7 032 CTRL/Z SUB
12-9-8
3 013 CTRL/K VT
4 014 CTRL/L FF
5 015 CTRL/M CR
6 016 CTRL/N SO
7 017 CTRL/O SI
11-9-8
none 030 CTRL/X CAN
1 031 CTRL/Y EM
4 034 CTRL/\ FS
5 035 CTRL/] GS
6 036 CTRL/" RS
7 037 CTRL/_ us

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-3 (Cont.)
DEC 026/DEC 029 Card Code Conversions

Zone Digit Octal Character Name
0-9-8

5 005 CTRL/E ENQ

6 006 CTRL/F ACK

7 007 CTRL/G BEL
12-0-8 none 150 h lower-case H
12-0-9 none 151 i lower-case 1
12-11-8 none 161 g lower-case Q
12-11-9 none 162 r lower-case R
11-0-8 none 171 y lower-case Y
11-0-9 none 172 z lower-case 2
12-11-9-8

1 020 CTRL/P DLE
12-0-9-8

1 000 NUL

1.4.8.5 High-Speed Paper Tape Reader/Punch (PC) - RT-11 provides
support of the PR1l High Speed Reader and the PCl1l High Speed
Reader/Punch through the PC handler. The PC handler distributed with
the system supports both the paper tape reader and punch. A handler
supporting only the paper tape reader can be created during SYSGEN.
The PC handler does not print an ~ on the terminal when it is entered
for input the first time, as did the PR handler for earlier releases
of RT-11. The tape must be in the reader when the command is issued,
or an input error occurs. This prohibits any two-pass operations from
being done using PC as an input device. For example, linking and
assembling from PC does not work; an input error occurs when the
second pass 1is initiated. The correct procedure is to transfer the
paper tape to disk or DECtape, and then perform the operation on the
transferred file.

On input, the PC handler zero fills the buffer when no more tape is
available to read. On the next read request to the PC handler, the

end-of-file bit in byte 52 is set and the C bit is set on return from
the I/0 completion.

1.4.8.6 Console Terminal Handler (TT) - The console terminal can be
used as a peripheral device by using the TT handler. Note that:

1. An " is typed when the handler is ready for input.

2. CTRL/Z can be used to specify the end of input to TT. No
carriage return is required after the CTRL/Z. 1If CTRL/Z is
not typed, the TT handler accepts characters until the word
count of the input request is satisfied.

3. CTRL/O, struck while output is directed to TT, causes an

entire output buffer (all characters currently queued) to be
ignored.

1-58

1.4.8.7

I/0 PROGRAMMING CONVENTIONS

A single CTRL/C struck while typing input to TT causes a
return to the monitor. If output is directed to TT, a double
CTRL/C is required to return to the monitor if FB is running.
If the SJ monitor is running, only a single CTRL/C is
required to terminate output.

The TT handler can be in use for only one job (foreground or
background) at a time, and for only one function (input or
output) at a time. The terminal communication for the Jjob
not using TT is not affected at all.

The user can type ahead to TT; characters are obtained from
the input ring buffer before the keyboard is referenced. The
terminating CTRL/Z can also be typed ahead.

I1f the mainline code of a job is using TT for input, and a
completion routine does a .TTYIN, typed characters are passed
unpredictably to the .TTYIN and TT. Therefore, this practice
should be avoided.

If a job sends data to TT for output and then does a .TTYOUT
or a .PRINT, the output from the latter is delayed until the
handler completes its transfer. If a TT output operation is
started when the monitor's terminal output ring buffer is not
empty (before the print-ahead is complete), the handler
completes the transfer operation before the buffer contents
are printed.

The TT handler does not interface to terminals other than the
assigned console terminal in a multi-terminal system.

RK06/07 Disk BHandler (DM) - The RT-11 RK06/07 handler has

some features that are not standard for most RT-11 handlers. Among
these non-standard features are the following:

1.
2.
3.
4.

5.

Support of bad block replacement.

.SPFUN requests to read and write absolute blocks on disk.
.SPFUN request to initialize the bad block replacement table.
.SPFUN error return information.

.SPFUN request to determine the size of a volume mounted in a
particular device unit. (The RKO6 and RK07 disks share the

same controller and handler. The RKO7 has twice as many
blocks as the RK06 volume.)

These features are discussed further in the following sections.

1.

Bad block replacement - The last cylinder of the RK06 and
RKO7 disks is used for bad block replacement and error
information. RT-11 supports a maximum of 32 bad blocks on
these disks. The bad block information is stored in block 1
on track 0, cylinder 0, of the disk. The replacement blocks
are stored on tracks 0 and 1 of the last cylinder. A bad
block replacement table is created in block 1 of the disk by
the DUP utility program when the disk is initialized. When a
bad block is encountered and the table is not present in the
handler from the same volume, the DM handler reads a
replacement table from block 1 of the disk and stores it in
the handler.

I/0 PROGRAMMING CONVENTIONS

When a bad sector error (BSE) or header validity error (HVRC)
is detected during a read or write, the DM handler replaces
the bad block with a good block from the replacement tracks.
The bad block replacement feature of RT-11 requires blocks 0
through 5 and tracks 0 and 1 of the last cylinder to be good.
This procedure causes an I/0 delay since the read/write heads
must move from their present position on the disk to the
replacement area, and back again.

If this I/0 delay cannot be tolerated, the disk can be
initialized without bad block replacement. In this case, bad
blocks are covered by .BAD files. Neither the bad blocks nor
the replacement tracks will be accessed. The advantage of
using bad block replacement is that the entire disk appears
to be good. 1If .BAD files are used instead, the disk becomes
fragmented around the bad blocks.

Only BSE and HVRC errors trigger the DM handler's bad block
replacement mechanism. If a bad block develops that is not a
BSE or HVRC error, the disk must be reformatted to have this
new block included in the replacement mechanism.
Reformatting should detect the new bad block, mark it so that
it generates a BSE or HVRC error, and add the block number to
the bad block information on the disk. The disk should then
be initialized to add the bad block to the replacement table.

+-SPFUN Requests - The RK06/07 handler accepts the .SPFUN
request with the following function codes:

377 for a read operation

376 for a write operation

374 - for initializing the bad block replacement table in the
handler.

373 - for determining the size, in 256-word blocks, of a
particular volume.

The format of the .SPFUN request is the same as explained in
Chapter 2 except as follows: for function codes 377 and 376,
the buffer size for reads and writes must be one word larger
than required for the data. The first word of the buffer
contains the error information returned from the .SPFUN
request. This information is returned for a .SPFUN read or
write, and the data transferred follows the error
information. The error codes and information are as follows:

Code Meaning
100000 If the I/0 operation is successful
100200 If a bad block is detected (BSE error)
100001 If an ECC error is corrected
100002 If an error recovered on retry
100004 If an error recovered through an offset retry
100010 If an error recovered after recalibration
1774xx If an error did not recover

1/0 PROGRAMMING CONVENTIONS

For function code 374, the buf, wcnt, and blk arguments should be 0.
For function code 373, buf is a one-word buffer where the size of the
specified volume in 256-word blocks is returned. The wcnt argument
should be 1 and the blk argument should be 0.

1.4.8.8 Null Handler (NL) - The null handler can accept all
read/write requests. On output operations this handler acts as a data
sink. When NL is called, it returns immediately to the monitor
indicating that the output 1is complete. The NL handler returns no
errors and causes no interrupts. On input operations NL returns an
end-of-file indication for all requests and no data is transferred.
Hence, the contents of the input buffer are unchanged.

1.4.8.9 RLO1l Disk Bandler (DL) - The RLO1l disk handler includes the
following special features:

1. .SPFUN requests to read and write absolute blocks on the disk
(without invoking the bad block replacement scheme).

2. Support of automatic bad block replacement.
3. .SPFUN request to initialize the bad block replacement table.

4. .SPFUN request to determine the size of a volume mounted in a
particular device unit.

The .SPFUN requests are as follows:

377 - for a read operation

376 - for a write operation

374 - for initializing the bad block replacement table in the
handler

373 - for determining the size, in 256-word blocks, of a

particular volume

Unlike the DM handler, the read and write .SPFUN requests for the DL
handler do not return an error status in the first word of the buffer.

See the description of the .SPFUN programmed request in Chapter 2 for
details on the special functions.

Bad block replacement for the RLO1l is similar to the bad block support
for the RK06 and RK0O7. However, the RLO1l device generates neither the
bad sector error (BSE) nor the header validity error (HVRC) .
Therefore, the handler must check the bad block replacement table for
each I/0 transfer. Since the table is always in memory as part of the
DL handler, the I/0 delay is not significant.

The last track of the RLOl disk contains a table of the bad sectors
that were discovered during manufacture of the disk. The ten blocks
preceding this table (the last ten blocks in the second-to-last track)
are set aside for bad block replacements. The maximum number of bad
blocks, ten, is defined in the handler.

As with the RK06 and RKO7, the user determines at initialization time
whether to cover bad blocks with .BAD files or to create a replacement
table for them and substitute good blocks during I/O transfers. The
advantage of using bad block replacement is that it makes a disk with
some bad blocks appear to have none. On the other hand, covering bad
blocks with .BAD files fragments the disk. Because RT-11 files must

1-61

I/0 PROGRAMMING CONVENTIONS

be stored in contiguous blocks, this fragmentation limits the size of
the largest file that can be stored.

If the /REPLACE option is specified during initialization of an RLO1l
disk, DUP scans the disk for bad blocks. It merges the scan
information with the manufacturing bad sector table, allocates a
replacement for each bad block, and writes a table of the bad blocks
and their replacements in the first 20 words of block 1 of the disk.
Block 1 1is a table of two-word entries. The first word is the block
number of a bad block; the second word is its allocated replacement.
The last entry in the table is a zero word. The entries in the table

are in order by ascending bad block number. A sample table 1is as
follows:

Bad block 12 Word 0
Its replacement 10210
37 Word 2
10211
553 Word 4
10212
End of list 0 Word 6

The handler contains space to hold a resident copy of the bad block
table for each unit. The amount of space allocated is defined by the
SYSGEN conditional DLSUN, which is the number of RLO1 units to be
supported. The value defaults to two if it is not defined. The

handler reads the disk copy of the table into its resident area under
the following three conditions:

l. If a request is passed to the handler and the table for that
unit has not been read since the handler was loaded into
memory.

2. If a request is passed to the handler and the handler detects
Volume Check drive status. This status indicates that the
drive spun down and spun up again, which means that the disk
was probably changed.

3. If a .SPFUN 374 request is passed to the handler. This
special function is used by DUP when it initializes the disk
table to ensure that the handler has a valid resident copy.

1.5 MULTI-TERMINAL SUPPORT

The multi-terminal device handler supports from one to sixteen
terminals. It is a SYSGEN option for FB and XM monitors that is
integrated into the resident monitor (RMON) and console terminal
service.

The multi-terminal service provides eight programmed requests as
follows (see Chapter 2 for additional details):

Sub-Code Request Operation
0 .MTSET Set terminal characteristics
1 «MTGET Get terminal characteristics
2 .MTIN Input characters from terminal
3 .MTOUT Output characters to terminal

1-62

1/0 PROGRAMMING CONVENTIONS

Sub-Code Request Operation
4 .MTRCTO Reset CTRL/O flag
5 .MTATCH Attach a terminal
6 .MTDTCH Detach a terminal
7 .MTPRN Print a line

Errors are returned in the error byte, location 52, as follows:

Error Codes Meanings
0 No character in buffer (MTIN).
No room in buffer (MTOUT).
1 Illegal unit number. The job did not attach it.
2 Non-existent unit number.
3 Illegal request - sub-code out of range.
4 Attempt to attach or detach a unit that is already

attached to another job.

5 Buffer or status block is outside legal addressing
range (XM monitor only).

The number and types of interfaces must be declared at SYSGEN time,
then logical wunit numbers (lun) are assigned to identify the
terminals. Lun's are assigned in the following order:

1. hardware console interface (a local DL11l)
2. other local mode DL1ll's

3. remote DL11l interfaces

4. local Dz11l lines

5. remote DZll lines

A unit control block, which associates a lun with a specific
interface, 1is set up for each terminal. Terminals are referenced by
the logical unit numbers. For example, logical unit number 0 is the
default console lun and is assigned to the hardware console interface.
The .TTYIN, .TTYOUT, .PRINT, .CSIGEN, .CSISPC, .GTLIN reguests, and
all TT references use the console; no TT support is provided for
terminals other than the console. Hence, an .MTIN or .MTOUT executed
with 0 as the logical unit number is directed to the console terminal.
However, the terminal that the system uses as the console can be

changed by the SET command as follows (provided that the terminal is a
local DL1l):

SET TT CONSOL=n

where:

n is a decimal value from 0 to 15 that indicates the 1logical
unit number of the terminal to be used as the new console.

1-63 September 1978

I/0 PROGRAMMING CONVENTIONS

For example, the following command assigns terminal number 3, which is
a local DL11l, to the system hardware console interface:

SET TT CONSOL=3

After this command is issued, .TTYIN, .TTYOUT, .PRINT, and any other
requests directed to the console terminal will use terminal number 3.

The foreground and background jobs can either share a single console
or they can have separate consoles. If a console is shared, only one
job can attach it. Only the owner of the shared console can issue
multi-terminal programmed requests to the terminal, but both jobs can
issue .TTYIN, .TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and .PRINT requests.

All other terminals must be attached by the job before they can be
referenced and used. When the terminal becomes attached, it is
dedicated to the job that issued the attach request except when the
console must be shared by foreground and background jobs. The
foreground job can have a separate console with a different 1lun
assigned to it. This lun will be the default value for the .TTYIN,
.TTYOUT, .CSIGEN, .CSISPC, .GTLIN, and .PRINT programmed requests.
The assigning of the separate console is performed at load time by the
FRUN option /T:lun. The separate console is not the primary system
console and can only be considered an auxiliary console since KMON
cannot communicate with it. This auxiliary foreground console must

also be a local DL1l terminal interface and cannot be changed by the
SET TT CONSOL command.

When a terminal is attached to a job, it remains attached until it is
detached by a .MDTCH programmed request (see Chapter 2 for details),
or until the job exits or is aborted. If the terminal is detached
through a programmed request, the output in process at the terminal is
allowed to finish before the terminal is detached. 1If the terminal is
detached by aborting the job, the output is terminated and the
terminal is detached immediately.

When a terminal is attached to a job, it has the following default
characteristics:

80. character column width
CRLF$ option enabled (generates LF after RET)
PAGES option enabled (XON/XOFF enabled)

These defaults can be changed by the .MTSET request.

An asynchronous terminal status (ATS) option is available and can be
selected at SYSGEN time. This option provides the job with updated
status of the terminal and modem. When the terminal is attached, the
job can supply a status word that is updated as changes in the
terminal status occur. The status bits and their meanings are as
follows:

AS.CTC 100000 bit 15 Double CTRL/C struck

AS.INP 40000 bit 14 Input is available

AS.OUT 20000 bit 13 Output buffer empty

AS.CAR 200 bit 7 Carrier present (remote only)

The AS.CTC bit is set if a double CTRL/C is struck on any terminal
except the Jjob's console terminal. If a double CTRL/C is struck on
the job's console terminal, the job is aborted unless an .SCCA request
has been issued. In this case, bit 15 of the terminal status word is
set. This bit must be reset by the job before further processing.

1-64

I/0 PROGRAMMING CONVENTIONS

The AS.INP bit 1s set if input is available (a line of characters in
normal mode or a single character in special mode). The bit is
cleared when the characters are read.

The AS.OUT bit 1s set when the output ring buffer is empty (when the
last character is printed). It is cleared when characters remain to
be printed.

The AS.CAR bit 1s set when a remote line is answered. It 1is <cleared
when a remote line hangs up or drops a carrier.

All of the bits discussed in the previous section indicate significant
events have occurred when they are set. These bits are set and

cleared by the multi-terminal service, except AS.CTC, which must be
cleared by the program when tested.

1.6 ERROR LOGGING
The error logging process Kkeeps a statistical record of all 1I/0
operations on devices that are supported by this feature. In addition
to the statistics, the error logging process also detects and stores
any errors that occur during the I/0 operations. The following
statistics for each supported device are recorded:

1. number of read successes

2. number of write successes

3. number of hard errors (unrecoverable errors)

4. number of soft errors (recoverable errors)
The following statistics for memory and cache are recorded:

1. number of memory parity errors

2. number of cache memory errors

In addition to the statistics listed above, the following information
is retained if an error occurs in memory:

1. error sequence number
2. PC

3. Ps

4. memory parity registers
5. cache error registers

The following information 1is retained if an error occurs on a
supported peripheral device:

1. error sequence number
2. unit number
3. device ID (from S$STAT)

4. queue element block number

I/0 PROGRAMMING CONVENTIONS

5. queue element buffer address

6. Qqueue element word count

7. device hardware registers

8. total retry count

9. retry countdown

1.6.1 The Error Logging Subsystem
The error logging process is implemented through an error 1logging
subsystem consisting of four programs written in MACRO and FORTRAN

(see Figure 1-4 and Table 1-4).

Table 1-4
Error Logging Subsystem Components
Program Language Function
Error Log Handler MACRO-11 Reads and stores system errors and
(EL) successful 1I/0 operations for all
supported devices.
Error Log Utility MACRO-11 Creates a disk file (ERRTMP.SYS),
(ERRUTL) writes out the data collected by the
EL handler to the file ERRTMP.SYS,
and queries for number of errors in
EL.
Error log file MACRO-11 Formats the file produced by ERRUTL
Formatter (PSE) into a standard error log file named
ERROR.DAT.
Error Summary/ FORTRAN 1V Analyzes and writes out the contents
Report Generator of the standard error log file to a
(SYE) hard-copy or visual display device.

1-66

1/0 PROGRAMMING CONVENTIONS

(14D 6'23)
30IA30

AVdSIa

(133uig 6'9)
301A30
AdOD QHVH

weibetrqg yo0Td TeuoT3oung wajysAsqns burbbog 10113

IVYNOILdO

(na

‘Al LHO4
‘0ISvE

NnW '1081Q)

WYH9O0Ud
43sn

‘3 MUl pue SJUBIUOD J3NQ ALM

-—

AjuQ Arewwnsg g/

AluQ 110day Y/

301A30 LNdLNO

1ioday 1B (1nejaq) S/H/

Ajewwng

HOLVH3IN3O
140434
3JAS

S3714
%S10

H311VWHOS

3Sd

1va's04y43

SAS'dW1iHH3

3Sd ¥’

3|1y NSIp 31easd

ainy

p-1 2anbra

CERCE

!

ain

Hy3

'$10413 40 § 10j AsanD '

H3L1ligm

¥344n8
3INIT NO

13

d334iNg

H3TANVH 13

‘73 "}Ul pUe SIUAIUOD J31NQ ALUM |

13
1Ivo

Xa

e

10

dd

Y

SH3TONVH
301A30

1-67

l.6.1.1

1/0 PROGRAMMING CONVENTIONS

The Error Log (EL) Handler - The RT-11 EL handler 1is a

MACRO-11 program that reads and stores errors and statistics and I1/0
operations. It consists of the following parts:

6.

Information and pointer area
Buffer initializer

On-line memory-to-file routine
Statistics and error collector
Statistics buffer

Error log buffer

The functions for the various parts of the EL handler are discussed in
the following section:

1.

The information and pointer area consists of the following:

a. An error buffer overflow counter containing the number of
free words in the error log buffer.

b. An offset pointer containing the byte offset to the
statistics buffer from the EL load address.

C. An offset pointer containing the byte offset to the error
log buffer from the EL load address.

d. The sequence number of the next error to be logged. If
the value 1is equal to 1, it indicates that no error has
been logged.

Buffer Initializer - This section of the EL handler is called
to initialize the error log buffer. The error log buffer can
be initialized in two ways:

a. As a ring buffer to save the newest data.
b. As a sequential buffer to save the oldest data.

On-Line Memory-To-File Routine - This part of the EL handler
allows the user programs or system programs (such as a
multi-user language system) to write the statistics buffer's
and error log buffer's contents to the disk-resident error
log file (ERRTMP.SYS). The program, however, must provide a
channel and queue element to accomplish the write operation.
In addition to this program-controlled method of writing the
buffers' contents to the ERRTMP.SYS file, facilities are
provided for accomplishing the same thing manually through a
system utility program (ERRUTL).

Statistics and Error Collection - This section of the EL
handler logs the read/write statistics and detects and stores
the error information. The information is retained in two
separate buffers until they are written to the disk-resident
error log file (ERRTMP.SYS).

The statistics buffer stores information on I/0 operations
for all supported devices since the last time that the buffer

was initialized. The information contained in this buffer is
as follows:

a. The number of successful read/write operations.

1-68

1.6.1.2
program

1.
2.

I/0 PROGRAMMING CONVENTIONS

b. The number of hard and soft I1/0 errors. A soft error is
defined as one that recovered or corrected itself. A
hard error is defined as one that did not recover or
correct itself and was reported back to the program.

c. The number of cache and memory parity errors.

The error buffer stores information on each hard or soft

device error and parity or cache errors. The information

contained in this buffer for a hard or soft device error |is
as follows:

a. The error sequence number and error type

b. The unit and device identification

c. The device's block address

d. The memory buffer address

e. The word count

f. The retry count

g. The number and content of all pertinent hardware
registers

The information contained in the error buffer for a cache or
memory parity error is as follows:

a. The error sequence number and error type
b. The PC and PS

c. The memory parity registers or cache error registers

The Error Utility Program (ERRUTL) - ERRUTL is a wutility

that performs the following operations:

Creates the system's error log file, ERRTMP.SYS.

Writes the error buffer and statistics buffer to the
ERRTMP.SYS file.

Allows the operator to query the number of errors in the
error buffer.

Initializes the EL handler after writing the buffer contents
or after creating the ERRTMP.SYS file upon an operator's
request.

Table 1-5 summarizes the commands that ERRUTL accepts.

1.6.1.3 Data FPormat Converter (PSE) - PSE is a system program that
performs the following operations:

1.
2.

Determines if the ERROR.DAT file exists on the system disk.

Creates the ERROR.DAT file if it does not already exist.

1-69

I/0 PROGRAMMING CONVENTIONS

3. Reads the ERRTMP.SYS file and converts the RT-11 specific
records to equivalent records in a DIGITAL standard error
logging format in the ERROR.DAT file.

1.6.1.4 Report Generator (SYE) - SYE is a system program that
performs the following operations:

1. Formats the ERROR.DAT file data into an error report, or
summary, or both.

2. Writes out the formatted data to a display, hard-copy, or
other device.

1.6.2 Using the Error Logging Subsystem

The error logging subsystem is useful in providing a history of system
performance that can be used to determine if specific devices are
becoming unreliable. However, the use of this subsystem does present
some restrictions to the overall RT-11 operating system. Among these
restrictions is the additional overhead on all I/0 transfers whether
an error occurred or not. The additional overhead on I/0 transfers
will be noticed only on time-dependent processes. In addition to the
increased amount of time, some memory space must be permanently given
up due to the increased size of the monitor and the presence of the EL
handler. Presently, the EL handler occupies a minimum of slightly
less than 1K words of memory.

Error logging is not included in the distributed RT-11 monitors. A
system generation must be performed to enable error logging. See the
RT-11 System Generation Manual for details.

1.6.2.1 Loading the EL Handler - The first thing that must be done to
use the error 1logging subsystem is to load the EL handler. The EL
handler is loaded and unloaded by the standard RT-11 LOAD and UNLOAD
commands.

To load the handler, type the following command in response to the
monitor's prompt (.). All commands must be terminated by a carriage
return.

.LOAD EL

It is desirable to have the EL handler loaded before other handlers
are loaded. This practice allows other handlers to be loaded and then
released, thus returning the memory space back to the system.

1.6.2.2 Using ERRUTL - After the EL handler is loaded, ERRUTL must be
used to create the error 1log file (ERRTMP.SYS) on the designated
device. To invoke the ERRUTL program, the user should type the
following command in response to the keyboard monitor's prompt (.).
All commands must be terminated by a carriage return.

.R ERRUTL
*

The asterisk
Commands to

I/0 PROGRAMMING CONVENTIONS

indicates that ERRUTL 1is ready to accept a command.

ERRUTL are of the form:

device-name: |[/options]
where:
device-name is the RT-11 physical device code for the output
device for the file ERRTMP.SYS. The format for
the device code is:
ddn
where
dd is the two-character RT-11 device
mnemonic.
n is the device unit number.
options represents one or more command options from Table
1-5.
Table 1-5
ERRUTL Options

Option Meaning

/Cl:s] Creates ERRTMP.SYS. The argument, s, specifies the file
size, 1in records. The default size is 20 records. One
record accommodates the full contents of the EL
handler's error and statistics buffers. ERRTMP.SYS need
not be created more than once.

/N Saves the most recent errors. When the buffer becomes
full, the o0ld data 1is replaced with the most recent
errors. The default operation is to save the oldest
errors. If the default 1is chosen, errors that occur
after the buffer becomes full are lost. This default
can be changed at SYSGEN time.

/Q Queries the EL handler for the number of errors currently
in the buffer.

/W Writes the contents of the buffer to ERRTMP.SYS and
empties the buffer.

The following example creates ERRTMP.SYS on device DMl:. It will

contain 50 r

ecords of the most recent errors.

*DM1:/C:50.,/N (¥ir)

The user should type to exit from ERRUTL.

NOTE

It ERRTMP.SYS is written by a program
other than ERRUTL, the file ERRTMP.SYS
must be created each time the system is
bootstrapped.

I/0 PROGRAMMING CONVENTIONS

Another function of the ERRUTL program is to query the EL handler for
the number of errors currently stored in the error buffer. Once the
amount of data stored in the EL handler is known, ERRUTL can be used

to write the contents of the error and statistics buffers to
ERRTMP.SYS.

The /Q option should be used to query the EL handler, as this example
shows:

.R ERRUTL (&&D)
*/Q (ReD)

The current sequence number and the number of bytes remaining in the
error buffer print on the console terminal. The error sequence
numbers begin with 1 and end with the number of errors in a full
buffer, plus 1. An error sequence number of 1 indicates that the
buffer is empty.

The /W option is used to write the buffer contents to ERRTMP.SYS.
Once ERRUTL is invoked, the format is as follows:

*device-name: /W
where:

device-name represents the device on which ERRTMP.SYS is
stored.

The buffers in the EL handler are written to the specified device and
re-initialized as a result of this procedure. The EL handler is
returned to the state it was in when it was first loaded.

The following command sequence, for example, causes the error and
statistics buffers to be written to DM0:ERRTMP.SYS.

*DMO : /W

1.6.2.3 Converting the Error Log File to a FORTRAN Data File - A
system program (PSE) is wused to convert the error 1log file
(ERRTMP.SYS) to a FORTRAN IV-compatible ERROR.DAT permanent disk file.
When the ERRTMP.SYS file is full, or when the user desires to get a
listing of the data even if the file is not full, the PSE program can
be used to read the ERRTMP.SYS file and convert it to FORTRAN-readable
records. Then another system program (SYE, discussed in the next
section) is run on the ERROR.DAT file to generate a hard-copy report
or display. The ERROR.DAT file is much larger than the ERRTMP.SYS
file. Thus, the ERROR.DAT file can accumulate several ERRTMP.SYS
files to provide a history of processor errors.

To invoke the PSE program, the user should type the following command
in response to the keyboard monitor's prompt (.). All commands must
be terminated by a carriage return.

.R PSE (Cren)
*

The asterisk indicates that PSE is ready to accept a command.
Commands to PSE are of the form:

output-filespec|[/option]=input-device:

1-72

I/0 PROGRAMMING CONVENTIONS

where:
output-filespec represents the device, file name, and file
type for the FORTRAN file, in the format:
ddn:filnam.typ[size]
where
dd is the two-character RT-11 device
mnemonic.
n is the device unit number.
filnam is the six-character file name.
typ is the three-character file type.
size is an optional argument that specifies
the size in blocks of the output file.
The default is 60 (decimal) blocks.
The default is DK:ERROR.DAT.
option represents a command option from Table 1-6.
input-device represents the input device. The default is
DK: .
Table 1-6
PSE Options
Option Meaning
/x[:size] Causes PSE to change the size of the existing

output file. If no size argument is specified,
the existing output file is doubled. If a size
is specified, the existing output file is
increased by that number (decimal) of blocks.

Wwhen PSE is invoked, it must first determine the state of the
ERROR.DAT file. If no current ERROR.DAT file exists, a new file must
be created. Under this condition, the user is requested to input the
number of blocks for the new file. If the ERROR.DAT file does exist,
PSE examines the file to ensure that there is enough space for the
records to be added.

The output file size can be changed at the program 1level in the
following manner:

1. PSE determines if the output file size 1is large -enough to
hold the new input records.

a. If the file size is sufficient, processing continues.

I/0 PROGRAMMING CONVENTIONS

b. If the file size is insufficient, the following error
message and prompts are printed out at the console:

PFSE-F-OUTFUT FILE TOO SMALL
MUST DELETE RECORDS FROM: MM:DD:YY
OK TO DELETE: Y OR N7

2. If N followed by a carriage return is entered, PSE prompts
for further input, and no records are deleted.

3. If Y followed by a carriage return is entered, records from
the specified days (month: day: vyear) are deleted from the
file and processing continues.

The records to be deleted are displayed at the terminal, and PSE can
be aborted if the operator wishes to retain the old records.

Once the file space has been examined, the formatting operation
begins. As records are formatted and added to the ERROR.DAT file,
they are deleted from the ERRTMP.SYS disk file. At the end of the
operation ERRTMP.SYS 1is left in its original null state and is
available to receive new data from the EL handler's buffers again. If

no further error 1logging is required, the operator can completely
delete the ERRTMP.SYS file.

The PSE program creates one error record for each memory or device
error in the buffer. This record contains a header field, a register
field and a program field.

In addition to the error record, PSE creates one statistics record for
each unit in use during the time span encompassed by this buffer of
error data. PSE also creates a statistics record for memory and cache
systems. This record contains a header field and a statistics field.
Each record contains an error sequence number starting with the next
sequential error number after the last one in the buffer. If no error
occurred for a device during the time span of the buffer, only the
statistics record is generated for read/write operations.

1.6.2.4 Generating the Error Report - The last operation and the end
objective of the error 1logging subsystem is to generate the error
report. This function is accomplished by using a system program named
SYE. SYE formats the ERROR.DAT file into an error report, an error
summary, or both. After the data is formatted into the desired type
of report, SYE writes out the file to a printer, visual display or
other device.

NOTE

Before running the SYE program, the user
must make certain that the system date
and time are current by executing the
DATE and TIME commands. If changes are
necessary, enter the following commands
in response to the monitor's prompt (.):

.DATE dd-mmm-yy D)
.TIME hh:mm:ss Crer)

1-74

I/0 PROGRAMMING CONVENTIONS

To invoke the SYE program, the user should type the following command
in response to the keyboard monitor's prompt (.). All commands must
be terminated by a carriage return.

.R SYE (kD)
*

The asterisk indicates that SYE 1is ready to accept a command.
Commands to SYE are of the form:

output-filespec=input-filespec|[/options]

where:

output-filespec represents the device, file name, and file
type that are destination for the error
report. If no file specification 1is given,
the default device 1is LP:. If a file name
and file type are specified, the default
device 1is DK:. The default file name and
file type are ERROR.LST.

input-filespec represents the device, file name, and file
type for the 1input file. The default is
DK:ERROR.DAT.

/options represents the valid options for SYE. If no
options are specified, SYE prints both an
error report and an error summary. Table 1-7
lists the options for SYE.

Table 1-7
SYE Options

Option Meaning

/R Generates the error report.

/S Generates the error summary.

default Generates both the error report and the

(when no option error summary.

specified)

An error report is a listing of the error types for each supported
device. The format of this report is very similar to the format of
the error log file. The error summary is a tally or summation of all
errors contained in the error log file. The output is selected by
user-specified options included in the command string.

1.6.2.5 Error Logging Example - The following commented listing is a
sample error 1log run. Following the commands are actual reports
produced by SYE, including detailed descriptions of them.

1-75

I/0 PROGRAMMING CONVENTIONS

RT-11SJ V03-02
PKMON-F-Command file rot found

+TIME 15:40:30
+DATE 14-FEE-78
LOAD EL

+R ERRUTL
*RKO:/C

.R ERRUTL
x/Q

SEQUENCE NUMBER=2
WORDS LEFT=243

XRKO /W

.R FSE
*XRKO :ERROR . DAT=RKO ¢
x~C

R SYE

XLF¢=/R/S

?SYE-I- 2. Fades
X*7C

The RT-11 system is bootstrapped.

The date and time are entered.

The EL handler is made resident in
memory.

The file ERRTMP.SYS is created on

RKO: since it did not already
exist.
The error logger has been

initialized and is ready to log
errors when the user proceeds with
regular system operation.

If the user has not altered the
application software to
automatically dump the memory error
buffer (see Section 1.6.3), ERRUTL
must be queried to determine
whether or not the buffer is full.

ERRUTL is queried for the number of
errors in the memory error buffer.

The memory error buffer is written
to RKO:.

PSE is invoked to convert the MACRO
records to standard FORTRAN-1IV
records. (Note that FORTRAN-IV is
not required to obtain error
logging support).

SYE 1is invoked to format the
ERROR.DAT file into an error report
and a summary, and to output it to
the line printer. SYE then prints
an informational message specifying
the number of pages printed.

I/0 PROGRAMMING CORVENTIONS

The device error report is printed first.

A SYE V83-81 SYSTEM ERROR REPORT COMPILED AT 14-FEB-78 15:44:89 PAGE

90100
s DISK DEVICE ERROR
c LOGGED 14-FEB-78 15:41:31
0 ENTRY NUMBER 1.
AOHORKKAOICIOIORND -
UNIT IDENTlPlCﬂTlON‘
UNIT PHYSICAL @ 1
F TVPE RXD1
SOFTWARE STRTUS INFORMATION:
G RETRIED e.
H NON-RECOVERED
DEVICE INFORMARTION:
REGISTERS:
1 RXCS 180140
J RXDB 0008000
x RXES 200120
QDDRESS AT ERROR:
BLOCK 6.
] TIQNSFER SI2E IN BVYTES: 1888
N PHYSICAL BUFFER ADDRESS START: 648.

The report is interpreted as follows:

Line Meaning

A SYE version identification and report title;
date and time report was generated.

includes

B Describes the type of error.

C Date and time the error occurred.

D Entry number for the particular error.

E The unit number of the device in error.

F The type of device in error.

G The number of times that RT-11 retried the operation in
error.

H Indicates whether or not RT-1l1l's error retry procedure
corrected the error.

I through K Show the device/controller registers at the time of the

error. The first column lists the register mnemonics.
The second column lists the contents of the registers.
The register information on retry operations is not
logged.

L The logical block number at the start of the transfer.

M The amount of data being transferred to the buffer of
the program incurring the error.

N The starting address of the buffer in the program

incurring the error.

I/0 PROGRAMMING CONVENTIONS

The device statistics report is printed next.

Hofololof
A DEVICE STATISTICS
8 LOGGED 14-FEB-78 15:41:31
Cc ENTRY NUMBER 2.

UNIT IDENTIFICATION:
O UNIT PHYSICAL # [}
E TYPE RKB2/RKBS/RKOSF

DEVICE STRTISTICS FOR THIS UNIT:
F # SOFT ERROR 2.
G # HARD ERRORS 8.
H ¢ OF READ SUCCESSES: 22.
! # OF WRITE SUCCESSES: 8.

HOIOAOIORAOK KKK IORIOIOIIOORCRIKAOK K HOIRAONOKAHORIHKHARIIAK HOKAORK
DEVICE STATISTICS

LOGGED 14-FEB-78 15:41:31

ENTRY NUMBER 3.

UNIT IDENTIFICATION:
UNIE PHYSICAL » 1

DEVICE STATISTICS FOR THIS UNIT:

* SOFT ERRORS: 8.
* HARD ERRORS: 1.
OF READ SUCCESSES: 8.
OF WRITE SUCCESSES: 9.
The report is interpreted as follows:
Line Meaning
A Shows that device statistics follow.
B Date and time the statistics were logged.
C The entry number of the error in the error log.
D The unit number for the device in error.
E The type of device in error.
F The number of soft errors that were logged
device.
G The number of hard errors that were logged
device.
H The number of successful reads that

without retries for the device.

I The number of successful writes that
without retries for the device.

1-78

per formed

per formed

I/0 PROGRAMMING CONVENTIONS

The summary report is printed last.

SYE V83-81 SYSTEM ERROR REPORT COMPILED AT 14-FEB-78 15:44:34 PAGE 2.

SUMMARY REPORT
A REPORT FILE ENVIRONMENT
8 INPUT

FILE DK :ERROR .DAT

¢ QUTPUT FILE LP :ERROR .LST

D SWITCHES /R/S

€ DATE OF FIRST ENTRY 14-FEB-78 15:41:31

F DATE OF LAST ENTRY 14-FEB-78 15:41:31
NTRIES PROCESSED 3.

GE

H ENTRIES MISSING

1 UNKNOWN ENTRY TYPES ENCOUNTERED

J FIELD FORMAT ERRORS ENCOUNTERED

K UNKNOWN DEVICES ENCOUNTERED

L DEVICE STRTISTICS PROCESSED

M MEMORY STATISTICS PROCESSED

N DEVICE ERRORS PROCESSED

O PARITY ERRORS PROCESSED
P -MEMORY

Q -CACHE

R -UNKNOWN

OO0~ ONOOO®

SYSTEM ERROR REPORT SUMMARY

s RKB3/RKBS/RKBSF UNIT+ 8
T SOFT 8.
U HARD 8.
v READ SUCCESSES 22.
W WRITE SUCCESSES 8.

SYSTEM ERROR REPORT SUMMARY

RXB1
SOFT

HARD
READ SUCCESSES
WRITE SUCCESSES

UNIT

The summary report is interpreted as follows:

Line

A through F

Meaning

Describe the SYE input and output files, and the date
and time of the first and last entries in the input
file.

The number of error entries formatted in the report.

The number of errors missed because the occurrence of
another error prevented a previous one from being
logged.

The number of unknown errors encountered by SYE. An
unknown error is any entry that the current version of
SYE cannot format. This situation can occur if an old
version of SYE has been run.

The number of times that the input file encountered a
data structure error (field format error). Such
encounters can indicate that the wrong version of the
pre-formatter PSE was used.

The number of entries that referred to a device not
supported by SYE. Such an entry can be encountered if
an application has implemented error 1logging on a
device that SYE does not recognize.

I/0 PROGRAMMING CONVENTIONS

where: wcnt =1 initializes the EL handler and
configures the buffer to retain the
newest errors.

=2 initializes the EL handler and

configures the buffer to retain the
oldest errors.

=3 returns four words of information in the
buffer "buf".

The four words returned in buf for code 3 are as follows:

word 1 the number of bytes remaining in the error buffer. If

this word 1is equal to 0, no space remains. The buffer
is full.

2 = the offset from the load point of the handler to the
start of the statistics buffer. Note that a .DSTATUS
returns the load address+6.

3 = the offset from the load point of the handler to the
start of the error buffer.

4 = the sequence number of the next error. This value is
reset to 1 when the EL handler is initialized.

1.6.3.3 Calling the Error Logger from a Handler - The error logger
can be called from a user-written device handler. EL should be called
on every successful transfer. If possible, the handler should
distinguish non-recoverable errors (such as write-locked volume,
unmounted volume, etc.) and not log them. The error 1logger should
also be called on an initial error and on every retry for that error.
Eventual success should be reported by a -1 in the high byte of R4;
complete failure should be reported by a 0. The error logger keeps
track of both soft (recoverable) and hard (non-recoverable) errors.

When the error logger is called from a handler, the call must be made
from fork level. This is because the error logger is not re-entrant.
Fork must be used to serialize access to the logger.
The call for the error logger is:

JSR PC,@SELPTR

where:

SELPTR is a pointer to the error 1logger in the table of
pointers constructed by the .DREND macro.

At the time of the call, the error 1logger requires the following
information:

R2 must point to a buffer in the driver that 1is large
enough to temporarily store all the device registers.

R3 the 1low byte must contain the number of device

registers to 1log; the high byte must contain the
maximum retry count.

1-82

I/0 PROGRAMMING CONVENTIONS

R4 the high byte must contain the device identification
code (extracted from the low byte of the device status
word); the low byte must contain a success code:

-1 for a successful transfer

0 for a transfer that has failed completely (the
retry count is exhausted)

n a non-zero retry count for a transfer that failed

but is being tried again
RS must point to the third word of the queue element.

After the error logger is called, RO through R3 are restored; R4 and
R5 are destroyed.

1.6.4 Building the EL Handler

The EL handler is an option that must be SYSGENed into the system
along with the fork processor to have a functioning error logging
capability. In addition to these software components, the system must
contain a disk and at least 16K (words) of memory.

The EL handler contains the following conditional assembly parameters,
which are set through a SYSGEN or contained in SYCND.MAC.

1. ERLSB the error buffer size in 256-word blocks. The

default value is 1.

2. ERLSU

the number of specific device units that can be
logged. The maximum number is 35 and the default
value is 10.

3. ERLSW

the buffer configuration. 1If set to 1, the newest
errors are kept. If not, the default value of 0 is
assumed, and the oldest errors are kept. The
buffer configuration can be changed by the ERRUTL
program when the ERRTMP.SYS file is created.

4. ERLSA

the on-line memory to file routine. 1If set to 1,
it is included. The default value is 0 indicating
that the on-line memory to file routine 1is not
included.

The EL handler is assembled and linked as follows:

.R MACRO
*EL=SYCND,EL
*7C

.R LINK
*EL.SYS=EL
*°C

.

1-83 September 1978

CHAPTER 2

PROGRAMMED REQUESTS

A number of services at the machine language level that the monitor
regularly provides to system programs are also available to
user-written programs. These include services for file manipulation
and command interpretation, and facilities for input and output
operations. User programs call these monitor services by means of
"programmed requests", which are assembler macro calls written into
the user program and interpreted by the monitor at program execution
time.

2.0 PROGRAMMED REQUESTS WITH EARLY VERSIONS OF RT-11

Programmed requests were implemented differently in each major release
of RT-11. The following sections outline the changes that were made
to the programmed requests.

2.0.1 Version 1 Programmed Requests

The earliest programmed requests, such as .READ and .WRITE, were
provided with the first release of RT-11. They were designed for a
single user, single job environment. As such, they differ
significantly from Version 2 and Version 3 programmed requests.
Arguments for Version 1 requests were pushed on the stack instead of
being stored in an argument list as they are now. The channel number
was limited to the range 0 through 17; more channels can be allocated
in later versions. Finally, no arguments could be omitted in the
macro call.

Programs written for use under Version 1 assemble and execute properly
under Version 3 when the ..Vl.. macro call is used (see Section
2.3.1.1). The ..Vl.. macro call causes all Version 1 programmed
requests to expand exactly as they did in Version 1. Version 2 and
Version 3 programmed requests expand as they should for Version 2 and
Version 3, respectively. However, it is to the user's advantage to
convert Version 1 programs so they use the current format for
programmed requests. See Section 2.5 for instructions on converting
Version 1 macro calls to the current format.

2.0.2 Version 2 Programmed Requests
The second major release of RT-11 brought with it some new programmed

requests and a different way of handling arguments for both the new
and the pre-existing requests. The new programmed requests reflected

2-1 September 1978

PROGRAMMED REQUESTS

RT-11's ability to run a foreground job as well as a background job;
they provided means to suspend and resume the foreground job, and to
share messages and data between the two jobs.

The major difference between Version 1 and Version 2 programmed
requests is that in Version 2, arguments for the macro calls are
stored in an argument list instead of on the stack. Another
substantial difference is that arguments can be omitted from the macro
calls in Version 2. If the area argument is omitted, the macro
assumes that RO points to a valid argument block. If any of the
optional arguments are not present, the macro places a zero in the
argument list for the corresponding argument. Version 1 programmed
requests were modified to incorporate these changes, and the ..Vl..
macro was provided so that Version 1 programs could execute properly
under Version 2 without further modification.

Programs written for use under Version 2 assemble and execute properly
under Version 3 when the ..V2.. macro call is used (see Section
2.3.1.1). The ..V2.. macro call causes all pre-Version 3 programmed
requests to expand in Version 2 format. Version 3 programmed
requests, if any, always expand in Version 3 format.

2.0.3 Version 3 (or later) Programmed Requests

The programmed requests for Version 3 provide means for user programs
to access regions in extended memory and to wuse more than one
terminal. The chief difference between Version 3 and Version 2
programmed requests is the way in which omitted arguments are handled.
In Version 3, blank fields in the macro calls do not cause zeros to be
entered into the argument block. 1In fact, the corresponding argument
block entry for the missing field is left untouched.

This change can have a significant impact on user programs. If an
argument block within a program is to be used many times for similar
calls, a programmer can save instructions by setting up the argument
block entries only once (at assembly or run time) and then leaving the
corresponding fields blank in the mmacro call.

However, users should keep in mind the fact that zeros are not
substituted for missing fields. Programs that make this assumption
operate incorrectly and exhibit a wide range of symptoms that can be
hard to diagnose. Therefore, the necessary instructions must be
written to fill the argument block, if a programmed request is 1issued
with fields left blank in the arqument list.

Programmed requests from previous versions were modified to
incorporate this change, and the ..V2.. macro was provided so that
Version 2 programs could execute properly under Version 3 without
further modification.

The macro definitions are included in the file SYSMAC.MAC; Appendix B
provides a listing of SYSMAC.MAC.

The FORTRAN programmer should note that the system subroutine library
gives him some of the same capability (through FORTRAN) to use the
programmed requests that are available to the assembly language
programmer and described in this chapter. FORTRAN users should first
read this chapter and then read Chapter 4.

2-2 September 1978

PROGRAMMED REQUESTS

2.1 FORMAT OF A PROGRAMMED REQUEST

The basis of a programmed request is the EMT (emulator trap)
instruction, used to communicate information to the monitor. When an
EMT is executed, control is passed to the monitor, which extracts
appropriate information from the EMT instruction and executes the
function required. The low-order byte of the EMT instruction contains
a code that is interpreted as follows:

Low-Order Byte Meaning
of EMT
377 Reserved; RT-11 ignores this EMT and returns

control to the user program immediately.

376 Used internally by the RT-11 monitor; this EMT
code should never be used by user programs.

375 Programmed request with several arguments: RO
must point to a list of arguments that designates
the specific function.

374 Programmed request with one argument: RO contains
a function code in the high-order byte and a
channel number (see Section 2.2.1) or code in the
low-order byte.

360-373 Used internally by the RT-11 monitor; these EMT
codes should never be used by user programs.

340-357 Programmed request with arguments on the stack
and/or in RO.

0-337 Version 1 programmed regquest. These EMTs use
arguments both on the stack and in RO. They are
supported for binary compatability with Version 1
programs.

A programmed request consists of a macro call followed, if necessary,
by one or more arguments. All programmed requests start with a period
(.) to distinguish them from user defined symbols and macros.
Arguments supplied to a macro call must be legal assembler expressions
since arguments are used as source fields in instructions (such as
MOV) when the macros are expanded at assembly time. The following two
formats are accepted by the monitor.

Format 1l: .PRGREQ argl,arg2,...argn
Format 2: .PRGREQ area,argl,arg2,...argn

Format 1 contains the argument list argl through argn; no argument
list pointer is required. Macros of this form generate either an EMT
374 or one of the EMTs 340-357. Certain arguments for this form can
be omitted.

In format 2, area is a pointer to the argument block that contains the
arguments argl through argn. This form always causes an EMT 375 to be
generated. Blank fields are permitted; however, if the area argument
is empty, the macro assumes that RO points to a valid argument block
(see Section 2.2.3). If any of the fields argl to argn are empty, the
corresponding entries in the argument list are left untouched. Thus,

.PRGREQ area,al,a2

2-2.1 September 1978

PROGRAMMED REQUESTS

points RO to the argument block at area and fills in the first and
second arguments, while:

.PRGREQ area

points RO to the block, and fills in the first word (request code) but
does not fill in any other arguments.

The call:
.PRGREQ ,al

assumes RO points to the argument block and fills in the al argument,
but leaves the a2 argument alone. The call:

. PRGREQ

generates only an EMT 375 and assumes that both RO and the block to
which it points are properly set up.

The arguments to RT-11 programmed request macros all serve as the
source field of an instruction that moves a value into the argument
block or RO. For example:

.PRGREQ CHAR
expands into:

MOV CHAR,RO
EMT 374

Care should be taken to make certain that the arguments specified are
legal source fields and that the address accurately represents the
value desired. If the value is a constant or symbolic constant, the
immediate addressing mode [#] should be used; if the value is in a
register, the register mnemonic [Rn] should be used; if the value is
indirectly addressed, the appropriate register convention is necessary
[@Rn]; and if the value is in memory, the label of the location whose
value is the argument is used.

Following are some examples of both correct and incorrect macro calls.
Consider the general request:

.PRGREQ area,argl,...argn
A more common way of writing a request of this form is:
.PRGREQ #area,#argl,...#argn

In this format, the address of area is put into register 0. Area is

the tag that indicates the beginning of the argument block. For
example:

.PRGREQ #AREA,#4

AREA: .WORD 0,0,0

2-3

PROGRAMMED REQUESTS

When a direct numerical argument is required, the # causes the correct
value to be put into the argument block. For example:

.PRGREQ #area,#4
is correct, while:

.PRGREQ #area,4

is not. This form interprets the 4 as meaning "move the contents of
location 4 into the argument block." Instead, the number 4 itself
should be moved into the block.

If the request is written as:
.PRGREQ area, #4

it is interpreted as "use the contents of location area as the 1list
pointer”, when the address of area is actually desired. This
expansion could be used with the following form:

.PRGREQ LISTI1, #4

LIST1: .WORD AREA
AREA: .WORD 0,0,0

In this case, the content of location LIST1 is the address of the
argument list. Similarly, this form is correct:

.PRGREQ LIST1,NUMBER

LIST1l: .WORD AREA
NUMBER: .WORD 4

In this case, the contents of the locations LIST1 and NUMBER are the
argument list pointer and data value, respectively.

NOTE

All registers except RO are preserved
across a programmed request. (In
certain cases, RO contains information
passed back by the monitor; however,
unless the description of a request
indicates that a specific value |is
returned in RO, the contents of RO are
unpredictable upon return from the
request). With the exception of calls
to the Command String Interpreter (CSI),
the position of the stack pointer is
also preserved across a programmed
request.

2.2 SYSTEM CONCEPTS

Some basic operational characteristics and concepts of RT-11 are
described in the following sections.

PROGRAMMED REQUESTS

2.2.1 Channel Number (chan)

A channel number is a logical identifier for a file or "set of data"
used by the RT-11 monitor. It can have a value in the range 0 to 377
(octal)--0 to 255 (decimal). In RT-11, a channel is the 1logical
connection between a channel number and all information that must be
maintained between data transfers, such as device and file name. When
a file is opened on a particular device, a channel number is assigned
to that file. To refer to an open file, it is only necessary to refer
to the appropriate channel number for that file.

2.2.2 Device Block (dblk)

A device block is a four-word block of Radix-50 information that
specifies a physical device, file name and file type for an RT-11
programmed request. For example, a device block representing the file
FILE.TYP on device DK: could be written as:

.RAD50 /DK /
.RAD50 /FIL/
.RADS0 /E /
.RADS50 /TYP/

The first word contains the device name, the second and third words
contain the file name, and the fourth contains the file type. Device,
name, and file type must each be left-justified in the appropriate
field. This string could also be written as:

.RADS0 /DK FILE TYP/

Note that spaces must be used to fill out each field. Note also that
the colon and period separators do not appear in the actual Radix-50
string. They are used only by the Command String Interpreter to
delimit the various fields.

2.2.3 EMT Argument Blocks

Programmed requests that call the monitor via EMT 375 use RO as a
pointer to an argument list. In general, this argument block appears
as follows when the EMT instruction is executed:

address contents
. function | channel
RO - area: ; number
[RO+2]) argument 1
[RO+4] argument 2

[RO+(n=2)]

RO points to location x. The even (low-order) byte of location x
contains the channel number named in the macro call. If no channel
number is required, the byte is set to 0. The odd (high-order) byte
of x is a code specifying the function to be performed. Locations
x+2, x+4, etc., contain arguments to be interpreted. These are
described in detail under each request.

PROGRAMMED REQUESTS

Requests that use EMT 374 set up RO with the channel number in the
even byte and the function code in the odd byte. They require no
other arguments.

2.2.4 Important Memory Areas

The memory areas for vector addresses, the resident monitor and
certain system communication information are particularly important
for RT-11's operation. Some addresses in these areas can be used by
user programs, but others must not be used under any circumstances.

2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) - Certain areas
of memory between 0 and 477 are reserved for use by RT-11. The
monitor does not load these locations from the memory image file when
it initiates a program. (The monitor RUN command does not load these
words, for example.) However, no hardware memory protection is
supplied. Therefore programs should never alter the contents of these
areas. If they are destroyed by a program, the system must be
re-bootstrapped or the program must restore them.

Locations Contents
0,2 Monitor restart. Executes the .EXIT request and
returns control to program. Modifying these

locations while using the XM monitor always causes
a system crash.

4,6 Time out or bus error trap; RT-11 sets this to
point to its internal trap handler.

10,12 Reserved instruction trap; RT-11 sets this to
point to its internal trap handler.

30,32 EMT trap vector.

34,36 TRAP instruction vector (in an FB or XM
environment this area is loaded by R, RUN, GET and
FRUN.

40-51 RT-11 system communication area (this area is
loaded by R, RUN and GET).

52-57 RT-11 system communication area (see Section
2.2.4.3, below).

60,62 Console Terminal input interrupt vector.

64,66 Console Terminal output interrupt vector.

100,102 KW1lL vector.

104,106 KWllP vector.

160,162 RLOl Disk vector.

200,202 LP11/LS11/LPV11 Line printer vector.
204,206 RF11,RS03/4 vector.

210,212 RK611/RK06, RKO7 Disk pack vector.

2-6

PROGRAMMED REQUESTS

Locations Contents

214,216 TCll vector.

220,222 RK11/RKV11l RKO5 Disk vector.

224,226 TJUl6,TM11,TS03 Magnetic tape vector.
250,252 KT1l1l Memory management fault vector.
254,256 RP04/11 Disk pack vector.

260,262 TAll Cassette vector.

264,266 RX11/RXV11l RX01,RX211/RX2V1 RX02 Diskette vector.
320,322

324,326) VT11/VS60 Graphics terminal vectors.
330,332

2.2.4.2 Resident Monitor - Chapter 1 describes the placement of
monitor components when the SJ monitor, the FB monitor or the XM
monitor is brought into memory; the approximate size of each monitor

component and the size of the area available for handlers and user
programs is included.

2.2.4.3 System Communication Area - RT-11 uses bytes 40-57 to hold
information about the program currently executing, as well as certain

information used only by the monitor. A description of these bytes
follows:

Bytes Meaning and Use

40,41 Start address of job. When a file is 1linked to
create an RT-11 memory image, this word is set to
the starting address of the job. When a

foreground program is executed, the FRUN processor
relocates this word to contain the actual starting
address of the program.

42,43 Initial value of the stack pointer. If it is not
set by the user program in an .ASECT, it defaults
to 1000 or the top of the .(ASECT in the
background, whichever is larger. If a foreground
program does not specify a stack pointer in this
word, a default stack (128 decimal bytes) is
allocated by FRUN immediately below the program.
The initial stack pointer can also be set by an
option of the linker.

44,45 Job Status Word (JSW). Used as a flag word for
the monitor. Certain bits are maintained by the
monitor exclusively while others may be set or
cleared by the user job.

Since the currently unassigned bits may be used in
future releases of RT-11, user programs should not
use these bits for internal flags.

Bytes

PROGRAMMED REQUESTS

Those bits in the following 1list marked by an
asterisk are bits that can be set by the user job.

Meanings and Use

Bit Meaning
Number

15 USR swap bit. (SJ only.) The monitor
sets this bit when programs do not
require the USR to be swapped. See
Section 2,2.5 for details on USR
swapping.

*14 Lower-case bit. Disables automatic
conversion of lower-case to upper-case
when set. EDIT sets this bit when the
EL command is typed.

*13 Reenter bit. When set, this bit
indicates that the program may be
restarted from the terminal with the
REENTER command.

*12 Special mode TT bit. When set, this bit
indicates that the job is in a “special”
keyboard mode of input. Refer to the
explanation of the .TTYIN/.TTINR
requests for details.

10 Virtual image bit. (XM only.) When set,
this bit indicates that the job to be
loaded is a virtual image. It must be
set in the execute file (with a .ASECT
or PATCH) before the program is loaded.

*11 Pass line to KMON bit. If this bit is
set when a user program exits, it
indicates that the user program is
passing a command line to the KMON. The
command line is stored in the CHAIN
information area (500-776). Refer to
the .EXIT example in Section 2.4.15.
This bit is not available to foreground
jobs under the FB and XM monitors.

9 Overlay Bit. Set (by the linker) if the
job uses the linker overlay structure.

8 CHAIN bit. If this bit is set in a
job's save image, words 500-776 are
loaded from the save file when the job
is started even if the job is entered
with .CHAIN. (These words are normally
used to pass parameters across .CHAINs.)
The bit is set when a job is running if
and only if the job was actually entered
with .CHAIN.

2-8

PROGRAMMED REQUESTS

Error halt bit. (SJ only.) When set,
this bit indicates a halt on an I/O
error. If the user desires to halt when
any I/0 device error occurs, this bit
should be set. (SJ only.)

Bytes

46,47

50,51

52

PROGRAMMED REQUESTS

Meaning and Use

Bit Meaning
Number
*6 Inhibit TT wait bit. For use with the

FB monitor. When set, this bit inhibits
the monitor from entering a console
terminal wait state. Refer to the
sections concerning .TTYIN/.TTINR and
.TTYOUT/.TTOUTR for more information.

*5 Filter escape sequences. This bit |is
ignored if bit 4 is not set. Bit 5 is
set to specify that escape sequences are
to be echoed (if not in special mode),
but not passed to the program. If this
bit is not set, escape sequences are
passed to the wuser program, but not
echoed.

*4 Process escape sequences. This bit is
set to enable any escape sequence
support. If this bit is not set, the
same support 1is provided as in version

3 Reserved for system use. Users should
not attempt to use this bit.

2-0 Reserved for internal use.

USR load address. Normally 0, this word can be
set to any valid word address in the user's
program. If 0, the USR is loaded in the default
location through an address contained in offset
266 of RMON. If this value is not 0, the USR is
simply loaded at the specified address (address in
word location). See Section 2.2.5, Swapping
Algorithm, for details of use.

High memory address. The monitor maintains the
highest address the user program can use in this
word. The linker sets it initially to the high
limit wvalue. It is modified only by the .SETTOP
monitor request.

EMT error code. If a monitor request results in
an error, the code number of the error is always
returned in byte 52 and the carry bit 1is set.
Each monitor <call has its own set of possible
errors. It is recommended that the user program
refer to byte 52 with absolute addressing rather
than relative addressing. For example:

ERRBYT = 52

TSTB ERRBYT ;s RELATIVE ADDRESSING
TSTB @#ERRBYT ;ABSOLUTE ADDRESSING
NOTE

Location 52 must always be addressed as
a byte, never as a word, since byte 53
has a different function.

2-9

Bytes

53

PROGRAMMED REQUESTS

Meaning and Use

User program error code (USERRB). If a user
program encounters errors during execution, it
indicates the error by using this byte. The KMON
examines this byte when a program terminates. 1If
a significant error is reported by the user
program, the KMON can abort any indirect command
files in use. This prevents spurious results from
occurring if subsequent commands in the indirect
file depend on the successful completion of all
prior commands.

A program can exit with one of the following
states:

Success
Warning
Error

Severe Error

The program status is successful when the
execution of the program is completely free of any
errors.

The warning status indicates that warning messages
occurred, but the execution of the program is
completed. The MACRO assembler sets the warning
level bit when it detects errors at assembly time.

The error status indicates that a user error
occurred and the execution of the program was not
completed. This level is used when the program
produces an output file even though the file may
contain errors. A compiler can use the error
level to indicate that an object file was
produced, but the source program contains errors.
Under these conditions, execution of the object
file will not be successful if the module
containing the error is encountered.

The severe error status indicates that the program
did not produce any usable output, and any command
or operation depending upon this program output
will not execute properly. This type of error can
result when a resource needed by the program to
complete execution is not available -- for
example, insufficient memory space to assemble or
compile a user program. The user program reports
status to RT-11 through byte 53, returning through
a hard or soft exit.

The following bits correspond to the four status
levels discussed previously.

2-10

Bytes

54,55

56

57

PROGRAMMED REQUESTS

Meaning and Use

Bit Meaning (if set to 1)
7-4 Reserved for future use (should not
be set or cleared by program).
3 Severe error
2 Error
1 Warning
0 Success

Programs should never clear byte 53 and should
only set it through a BISB instruction, as in the
following example:

USERRB = 53
SUCCss =1
WARNS = 2
ERRORS = 4
SEVERS = 10
ERROR: BISB #ERRORS,@#USERRB ;SET ERROR
; STATUS
CLR RO ;HARD EXIT
LEXIT

Address of the beginning of the resident monitor.
RT-11 always loads the monitor into the highest
available memory locations; this word points to
its first location. It must never be altered by
the user. Doing so causes RT-1l1 to malfunction.

Fill character (seven-bit ASCII). Some high-speed
terminals require filler (null) characters after
printing certain characters. Byte 56 should
contain the ASCII seven-bit representation of the
character after which fillers are required.

Fill count. This byte specifies the number of
fill characters that are required. The number of
characters is determined by hardware. 1If bytes 56
and 57 equal 0, no fill is required.

The terminals requiring fill characters are:

Word 56
Terminal No. of fills Value

Serial LA30 @ 300 baud 10 after <RET> 5015

Serial LA30 @ 150 baud 4 after <RET> 2015
Serial LA30 @ 110 baud 2 after <RET> 1015
VTO05 @ 2400 baud 4 after <LF> 2012
VTO05 @ 1200 baud 2 after <LF> 1012
VTO05 @ 600 baud 1 after <LF> 412

2-11

PROGRAMMED REQUESTS

2.2.5 Swapping Algorithm

Programmed requests are divided into two categories according to
whether or not they require the USR to be in memory (see Table 2-2).
Any request that requires the USR in memory can also require that a
portion of the user program be saved temporarily in the system device
swap file (that is, be "swapped out" and stored in the file SWAP.SYS)
to provide room for the USR. The USR is then read into memory. 1In
the XM monitor, the USR is always resident, and therefore never
swapped. During normal operations, this swapping is invisible to the
user. However, it is possible to optimize programs so that they
require little or no swapping.

The following items should be considered if a swap operation is
necessary:

1. The background job - If a .SETTOP request in a background job
specifies an address beyond the point at which the USR
normally resides, a swap is required when the USR is called.
More details concerning the .SETTOP request are in Section
2.4.3.6.

2. The value of location 46 - If the user either assembles an
address into word 46 or moves a value there while the program
is running, RT-11 uses the contents of that word as an
alternate place to swap the USR. If location 46 is 0, this
indicates that the USR will be at its normal location in high
memory.

3. Monitor offset 374 - The contents of monitor offset 374
indicates the size of the USR in bytes. This can be useful
in planning memory allocation. (See Section 2.2.6.)

NOTES

1. If the USR does not require
swapping, the value in location 46
is ignored. Swapping is a
relatively time-consuming operation
and should be avoided, if possible.

2. A foreground job must always have a
value in 1location 46 unless it is
certain that the USR will never be
swapped. If the foreground job does
not allow space for the USR and a
swap 1is required, a fatal error
occurs. (The SET USR NOSWAP command
ensures that the USR is always
resident.)

3. Care should be taken when specifying
an alternate address in location 46.
The SJ monitor does not verify the
legality of the USR swap address,
and if the area to be swapped
overlays the resident monitor, the
system is destroyed.

2-12

