RT-11
Advanced
Programmer’s Guide

Order No. AA-5280B-TC

dlilgliltlall

November 1978

This manual is a reference document for advanced RT-11 users,
including FORTRAN-1V users and MACRO-11 assembly
language programmers.

RT-11
Advanced
Programmer’s Guide

Order No. AA-5280B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes DEC-11-ORAPA-A-D. This
manual includes Update Notice No. 1 (AD-5280B-T1),
Update Notice No. 2 (AD-5280B-T2), and Update
Notice No. 3 (AD-5280B-T3).

OPERATING SYSTEM AND VERSION: RT-11 V03B

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, October 1977
Revised: March 1978
July 1978

September 1978

November 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright () 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

CONTENTS

PREFACE
CHAPTER 1 I/0 PROGRAMMING CONVENTIONS

MONITOR SOFTWARE COMPONENTS
1 Resident Monitor (RMON)
2 Keyboard Monitor (KMON)
3 User Service Routine (USR)
4 Device Handlers
GENERAL MEMORY LAYOUT
WRITING USER INTERRUPT SERVICE ROUTINES
1 Setting Up Interrupt Vectors
2 Interrupt Priorities
.3 Interrupt Service Routine
4 Return From Interrupt Service
5 Issuing Programmed Requests at the Interrupt
Level
User Interrupt Service Routines with the
XM Monitor
DEVICE HANDLERS
Differences Between V2 and V3 Device Handlers
The Parts of a Handler
Adding a SET Option
Monitor Services for Device Handlers
Use of .FORK Process
Use of .SYNCH
Multi-Vector Support
Error Logging
Extended Memory Support for Handlers
Device Time-out Support
Installing and Removing Handlers
Converting Handlers to V03 Format
Patching a V02 Format Handler
Source Edit Conversion of Handlers
Full Conversion of Device Handlers
Device Handler Program Skeleton Outline
Programming for Specific Devices
Magnetic Tape Handlers (MM,MT)
Cassette Tape Handler (CT)
Diskette Handlers (DX,DY)
Card Reader Handler (CR)
High-Speed Paper Tape Reader/Punch (PC)
Console Terminal Handler (TT)
RK06/07 Disk Handler (DM)
Null Handler (NL)
RLO1 Disk Handler (DL)
MULTI-TERMINAL SUPPORT
ERROR LOGGING
The Error Logging Subsystem
The Error Log (EL) Handler
The Error Utility Program (ERRUTL)
Data Format Converter (PSE)
Report Generator (SYE)

FHEFRFHRRRRRREP
e ¢ s e s 4 s 0 8 6 4
WWWWWWN K

[
.
w
.
(o)}

AU W+

e o o 0 o o o o o 0 o s s o s s s 0
.
[OV N S0

.

OO OODOOODO~JANNNN WU & b bbb bW+
s o s s o s o s P « o e o
WO JdJAaAU & W

® o o o o o o o & & 0 8 8 0 o & 5 s s ° s 0 o o o o

e o o o o 6 o s o o o 5 s 0

YO\ OV OOV OV U b b o b o2 b o b oD b o b b b b o B DD DD BB

Ce e .
e

HHRHRHFEFRPRHFRHERERRERRRRPRRRRRRPRRHERERREREERRE

P
.
> w N

.

iii

Page

= X
1 e
H

R

1
NO OO NDNDNNDNDN

I
~

il N o]

CONTENTS (Cont.)

Page
1.6.2 Using the Error Logging Subsystem 1-70
l1.6.2.1 Loading the EL Handler 1-70
1.6.2.2 Using ERRUTL 1-70
1.6.2.3 Converting the Error Log File to a FORTRAN
Data File 1-72
1.6.2.4 Generating the Error Report 1-74
1.6.2.5 Error Logging Example 1-75
1.6.3 Program Interfaces to the EL Handler 1-80
1.6.3.1 On-Line Writing of the Error Buffer 1-80
l1.6.3.2 Auxiliary Calls to the EL Handler 1-81
1.6.3.3 Calling the Error Logger from a Handler 1-82
.6.4 Building the EL Handler 1-83
CHAPTER PROGRAMMED REQUESTS 2-1

PROGRAMMED REQUESTS WITH EARLY VERSIONS OF RT-11
1 Version 1 Programmed Requests
2 Version 2 Programmed Requests
3 Version 3 (or later) Programmed Requests
FORMAT OF A PROGRAMMED REQUEST
SYSTEM CONCEPTS

. . . [L]
OO
=

[

1
2
2.0 2
2.0 2
2.0 2
2.0 2-2
2.1 2-2
2.2 2-4
2.2.1 Channel Number (chan) 2-5
2.2.2 Device Block (dblk) 2-5
2.2.3 EMT Argument Blocks 2-5
2.2.4 Important Memory Areas 2-6
2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) 2-6
2.2.4.2 Resident Monitor 2-7
2.2.4.3 System Communication Area 2-7
2.2.5 Swapping Algorithm 2-12
2.2.6 Offset Words 2-13
2.2.7 File Structure 2-16
2.2.8 Completion Routines 2-17
2.2.9 Using the System Macro Library 2-18
2.2.10 Error Reporting 2-18
2.3 TYPES OF PROGRAMMED REQUESTS 2-19
2.3.1 System Macros 2-26
2.3.1.1 ..V1../..V2.. 2-27
2.4 PROGRAMMED REQUEST USAGE 2-28
2.4.1 .CDFN 2-30
2.4.2 .CHAIN 2-31
2.4.3 .CHCOPY (FB and XM Only) 2-33
2.4.4 .CLOSE 2-35
2.4.5 .CMKT (FB and XM Only; SJ Monitor SYSGEN

Option) 2-36
2.4.6 .CNTXSW (FB and XM Only) 2-37
2.4.7 .CSIGEN 2-38
2.4.8 .CSISPC 2-41
2.4.8.1 Passing Option Information 2-43
2.4.9 .CSTAT (FB and XM Only) 2-46
2.4.10 .DATE 2-47
2.4.11 .DELETE 2-49
2.4.12 .DEVICE (FB and XM Only) 2-50
2.4.13 .DSTATUS 2-52
2.4.14 -ENTER 2-54
2.4.15 JEXIT 2-56
2.4.16 .FETCH/.RELEAS 2-58
2.4.17 .FORK 2-60
2.4.18 .GTIM 2-61
2.4.19 .GTJB 2-63

iv September 1978

CONTENTS

Page
PREFACE xi
CHAPTER 1 I/0 PROGRAMMING CONVENTIONS 1-1
1.1 MONITOR SOFTWARE COMPONENTS 1-2
1.1.1 Resident Monitor (RMON) 1-2
1.1.2 Keyboard Monitor (KMON) 1-2
1.1.3 User Service Routine (USR) 1-2
1.1.4 Device Handlers 1-2
1.2 GENERAL MEMORY LAYOUT 1-2
1.3 WRITING USER INTERRUPT SERVICE ROUTINES 1-6
1.3.1 Setting Up Interrupt Vectors 1-6
1.3.2 Interrupt Priorities 1-6
1.3.3 Interrupt Service Routine 1-6
1.3.4 Return From Interrupt Service 1-7
1.3.5 Issuing Programmed Requests at the Interrupt
Level 1-7
1.3.6 User Interrupt Service Routines with the
XM Monitor 1-7
1.4 DEVICE HANDLERS 1-7
1.4.1 Differences Between V2 and V3 Device Handlers 1-8
1.4.2 The Parts of a Handler 1-8
1.4.3 Adding a SET Option 1-12
1.4.4 Monitor Services for Device Handlers 1-13
1.4.4.1 Use of .FORK Process 1-13
1.4.4.2 Use of .SYNCH 1-15
1.4.4.3 Multi-Vector Support 1-16
1.4.4.4 Error Logging 1-17
1.4.4.5 Extended Memory Support for Handlers 1-17
1.4.4.6 Device Time-out Support 1-19
1.4.5 Installing and Removing Handlers 1-20
1.4.6 Converting Handlers to V03 Format 1-21
1.4.6.1 Patching a V02 Format Handler 1-21
l1.4.6.2 Source Edit Conversion of Handlers 1-22
1.4.6.3 Full Conversion of Device Handlers 1-23
1.4.7 Device Handler Program Skeleton Outline 1-27
1.4.8 Programming for Specific Devices 1-29
1.4.8.1 Magnetic Tape Handlers (MM,MT) 1-29
1.4.8.2 Cassette Tape Handler (CT) 1-48
1.4.8.3 Diskette Handlers (DX,DY) 1-53
1.4.8.4 Card Reader Handler (CR) 1-54
1.4.8.5 High-Speed Paper Tape Reader/Punch (PC) 1-58
1.4.8.6 Console Terminal Handler (TT) 1-58
1.4.8.7 RK06/07 Disk Handler (DM) 1-59
1.4.8.8 Null Handler (NL) 1-61
1.4.8.9 RLO1 Disk Handler (DL) 1-61
1.5 MULTI-TERMINAL SUPPORT 1-62
1.6 ERROR LOGGING 1-65
l.6.1 The Error Logging Subsystem 1-66
1.6.1.1 The Error Log (EL) Handler 1-68
l1.6.1.2 The Error Utility Program (ERRUTL) 1-69

iii

CONTENTS (Cont.)

Page
1.6.1.3 Data Format Converter (PSE) 1-69
1.6.1.4 Report Generator (SYE) 1-70
l1.6.2 Using the Error Logging Subsystem 1-70
1.6.2.1 Loading the EL Handler 1-70
1.6.2.2 Using ERRUTL 1-70
1.6.2.3 Converting the Error Log File to a FORTRAN
Data File 1-72
1.6.2.4 Generating the Error Report 1-74
1.6.2.5 Error Logging Example 1-75
1.6.3 Program Interfaces to the EL Handler 1-80
1.6.3.1 On-Line Writing of the Error Buffer 1-80
1.6.3.2 Auxiliary Calls to the EL Handler 1-81
1.6.3.3 Calling the Error Logger from a Handler 1-82
1.6.4 Building the EL Handler 1-83
CHAPTER 2 PROGRAMMED REQUESTS 2-1
2.1 FORMAT OF A PROGRAMMED REQUEST 2-2
2.2 SYSTEM CONCEPTS 2-4
2.2.1 Channel Number (chan) 2-5
2.2.2 Device Block (dblk) 2-5
2.2.3 EMT Argument Blocks 2-5
2.2.4 Important Memory Areas 2-6
2.2.4.1 Vector Addresses (0-37 octal, 60-477 octal) 2-6
2.2.4.2 Resident Monitor 2-7
2.2.4.3 System Communication Area 2-7
2.2.5 Swapping Algorithm 2-12
2.2.6 Offset Words 2-13
2.2.7 File Structure 2-16
2.2.8 Completion Routines 2-17
2.2.9 Using the System Macro Library 2-18
2.2.10 Error Reporting 2-18
2.3 TYPES OF PROGRAMMED REQUESTS 2-19
2.3.1 System Macros 2-26
2.3.1.1 <Vl /L0v2,, 2-27
2.4 PROGRAMMED REQUEST USAGE 2-28
2.4.1 .CDFN 2-30
2.4.2 .CHAIN 2-31
2.4.3 .CHCOPY (FB and XM Only) 2-33
2.4.4 .CLOSE 2-35
2.4.5 .CMKT (FB and XM Only; SJ Monitor SYSGEN
Option) 2-36
2.4.6 .CNTXSW (FB and XM Only) 2-37
2.4.7 .CSIGEN 2-38
2.4.8 .CSISPC 2-41
2.4.8.1 Passing Option Information 2-43
2.4.9 .CSTAT (FB and XM Only) 2-46
2.4.10 .DATE 2-47
2.4.11 .DELETE 2-49
2.4.12 .DEVICE (FB and XM Only) 2-50
2.4.13 .DSTATUS 2-52
2.4.14 .ENTER 2-54
2.4.15 .EXIT 2-56
2.4.16 .FETCH/.RELEAS 2-58
2.4.17 .FORK 2-60
2.4.18 .GTIM 2-61
2.4.19 .GTJB 2-63

iv

CONTENTS (Cont.)

Page
2.4.20 .GTLIN 2-64
2.4.21 .GVAL 2-66
2.4.22 .HERR/.SERR 2-67
2.4.23 .HRESET 2-70
2.4.24 .INTEN 2-70
2.4.25 .LOCK/.UNLOCK 2-71
2.4.26 . LOOKUP 2-73
2.4.27 .MFPS/.MTPS 2-76
2.4.28 .MRKT (FB and XM Only; SJ Monitor SYSGEN

Option) 2-78
2.4.29 .MTATCH (FB and XM Monitor SYSGEN Option) 2-80
2.4.30 .MTDTCH (FB and XM Monitor SYSGEN Option) 2-81
2.4.31 .MTGET (FB and XM Monitor SYSGEN Option) 2-82
2.4.32 .MTIN (FB and XM Monitor SYSGEN Option) 2-83
2.4.33 .MTOUT (FB and XM Monitor SYSGEN Option) 2-84
2.4.34 .MTPRNT (FB and XM Monitor SYSGEN Option) 2-85
2.4.35 .MTRCTO (FB and XM Monitor SYSGEN Option) 2-86
2.4.36 .MTSET (FB and XM Monitor SYSGEN Option) 2-87
2.4.37 .MWAIT (FB and XM Only) 2-90
2.4.38 .PRINT 2-90
2.4.39 .PROTECT/.UNPROTECT (FB and XM Only) 2-91
2.4.40 .PURGE 2-93
2.4.41 .QSET 2-94
2.4.42 .RCTRLO 2-95
2.4.43 .RCVD/.RCVDC/.RCVDW (FB and XM Only) 2-96
2.4.44 .READ/.READC/.READW 2-99
2.4.45 . RENAME 2-104
2.4.46 . REOPEN 2-105
2.4.47 .SAVESTATUS 2-106
2.4.48 .Scca 2-108
2.4.49 .SDAT/.SDATC/.SDATW (FB and XM Only) 2-110
2.4.50 .SETTOP 2-113
2.4.51 .SFPA 2-115
2.4.52 .SPFUN 2-116
2.4.53 .SPND/.RSUM (FB and XM Only) 2-119
2.4.54 .SRESET 2-122
2.4.55 .SYNCH 2-123
2.4.56 .TLOCK (FB and XM Only) 2-125
2.4.57 .TRPSET 2-126
2.4.58 .TTYIN/TTINR 2-127
2.4.59 .TTYOUT/.TTOUTR 2-129
2.4.60 .TWAIT (FB and XM Only) 2-132
2.4.61 .WAIT 2-133
2.4.62 .WRITE/.WRITC/.WRITW 2-134
2.5 CONVERTING VERSION 1 MACRO CALLS TO VERSION 3 2-142
2.5.1 Macro Calls Requiring No Conversion 2-142
2.5.2 Macro Calls That Can Be Converted 2-143
CHAPTER 3 EXTENDED MEMORY 3-1
3.1 INTRODUCTION 3-1
3.2 THE LANGUAGE AND CONCEPTS OF RT-11 EXTENDED
MEMORY SUPPORT 3-2
3.3 RT-11 EXTENDED MEMORY FUNCTIONAL DESCRIPTION 3-4
3.3.1 Creating Virtual Address Windows 3-5
3.3.2 Allocating and Deallocating Regions in
Extended Memory 3-8

CONTENTS (Cont.)

Page
3.3.3 Mapping Windows to Regions 3-9
3.3.4 Mapping in the Foreground and Background
Modes 3-12
3.3.4.1 Monitor Loading and Memory Layout 3-12
3.3.4.2 Virtual Mapping 3-12
3.3.4.3 Privileged or Compatibility Mapping 3-13
3.3.4.4 Context Switching of Virtual and Privileged
Jobs 3-14
3.3.5 I/0 to Extended Memory 3-14
3.4 SUMMARY OF PROGRAMMED REQUESTS 3-15
3.4.1 Programmed Requests to Manipulate Windows 3-17
3.4.1.1 Window Definition Block 3-17
3.4.1.2 Using Macros to Generate Window Definition
Blocks 3-19
3.4.1.3 Create an Address Window (.CRAW) 3-21
3.4.1.4 Eliminate an Address Window (.ELAW) 3-22
3.4.2 Programmed Requests to Manage Extended
Memory Regions 3-22
3.4.2.1 Region Definition Block 3-22
3.4.2.2 Using Macros to Generate Region Definition
Blocks 3-23
3.4.2.3 Create a Region (.CRRG) 3-24
3.4.2.4 Eliminate a Region (.ELRG) 3-25
3.4.3 Mapping Requests 3-25
3.4.3.1 Mapping Status (.GMCX) 3-25
3.4.3.2 Map a Window (.MAP) 3-26
3.4.3.3 Unmap a Window (.UNMAP) 3-27
3.5 SUMMARY OF STATUS AND ERROR MONITORING 3-27
3.6 USER INTERRUPT SERVICE ROUTINES WITH THE
XM MONITOR 3-28
3.7 EXAMPLE PROGRAM 3-31
3.8 EXTENDED MEMORY RESTRICTIONS 3-33
3.9 SUMMARY AND HIGHLIGHTS OF RT-11 EXTENDED
MEMORY SUPPORT 3-33
3.9.1 Extended Memory Prerequisites 3-34
3.9.2 What Is Extended Memory Support? 3-34
3.9.3 How Is Extended Memory Support Implemented? 3-34
3.9.4 How To Use Extended Memory Programmed
Requests 3-34
3.9.5 Operational Characteristics of Extended
Memory Support 3-35
CHAPTER 4 SYSTEM SUBROUTINE LIBRARY 4-1
4.1 INTRODUCTION 4-1
4.1.1 Conventions and Restrictions 4-2
4.1.2 Calling SYSF4 Subprograms 4-3
4.1.3 Using SYSF4 with MACRO 4-3
4.1.4 Running a FORTRAN Program in the Foreground 4-6
4.1.5 Linking with SYSF4 4-7
4.2 TYPES OF SYSF4 SERVICES 4-8
4.2.1 Completion Routines 4-17
4.2.2 Channel-Oriented Operations 4-19
4.2.3 INTEGER*4 Support Functions 4-19
4.2.4 Character String Functions 4-20
4.2.4.1 Allocating Character String Variables 4-21
4.2.4.2 Passing Strings to Subprograms 4-22

vi

=

.
.

CONTENTS (Cont.)

Using Quoted-String Literals

LIBRARY FUNCTIONS AND SUBROUTINES

v e o e e o o

v e e

CVUTUNTUTUTN b e BB WWWWWWWWWWINNNNNNNNMNOMNNNNFHEHEEFEEREHEERFREEFEOO NSO O S WN

NBWNHOWOJOUMEBWNHFOWOVWOJAUTBWNHOWONOAUMEWNHOWOJAULSEWNHO

* e

o o o

s 8 8 e e e e 9 e+ 2 0 s e o 0 o s 0 e o+

o © o e 6 o o o 5 8 e o 6 & & o e o 8 o o e e e o o e o o o 6 o o 0 s s s 2 e o s o 0 s o o
o o s o o o o

G G O G G N G T T - R R i O R N N N - T I RN i S I I Rl o ol
WWWWWWWWWWWWWWWWWWWWWLWWWWWWWWWLWWWWWWWWWUWWWWWWWUWWWLWWWWWWWWWWN

o o o
e o o o o o o o o o o

AJFLT

CHAIN

CLOSEC

CONCAT

CVITIM

DEVICE (FB and XM Only)
DJFLT

GETSTR

GTIM

GTJB

GTLIN

IADDR

IAJFLT

IASIGN

ICDFN

ICHCPY (FB and XM Only)
ICMKT

ICSI

ICSTAT (FB and XM Only)
IDELET

IDJFLT

IDSTAT

IENTER

IFETCH

IFREEC

IGETC

IGETSP

IJCVT

ILUN

INDEX

INSERT

INTSET

IPEEK

IPEEKB

IPOKE

IPOKEB

IQSET

IRADS0
IRCVD/IRCVDC/IRCVDF/IRCVDW (FB and XM Only)
IREAD/IREADC/IREADF/IREADW
IRENAM

IREOPN

ISAVES

ISCHED
ISDAT/ISDATC/ISDATF/ISDATW (FB and XM Only)
ISLEEP
ISPFN/ISPFNC/ISPFNF/ISPFNW
ISPY

ITIMER

ITLOCK (FB and XM Only)
ITTINR

ITTOUR

ITWAIT (FB and XM Only)
IUNTIL (FB and XM Only)
IWAIT

vii

CONTENTS (Cont.)

Page
4.3.56 IWRITC/IWRITE/IWRITF/IWRITW 4-80
4.3.57 JADD 4-83
4.3.58 JAFIX 4-84
4.3.59 JCMP 4-84
4.3.60 JDFIX 4-85
4.3.61 JDIV 4-85
4.3.62 JICVT 4-86
4.3.63 JJCVT 4-87
4.3.64 JMOV 4-87
4.3.65 JMUL 4-88
4.3.66 JSUB 4-88
4.3.67 JTIME 4-89
4.3.68 LEN 4-90
4.3.69 LOCK 4-90
4.3.70 LOOKUP 4-92
4.3.71 MRKT 4-93
4.3.72 MTATCH (FB and XM Only) 4-94
4.3.73 MTDTCH (FB anéd XM Only) 4-95
4.3.74 MTGET (FB and XM Only) 4-95
4.3.75 MTIN (FB and XM Only) 4-95
4.3.76 MTOUT (FB and XM Only) 4-96
4.3.77 MTPRNT (FB and XM Only) 4-96
4.3.78 MTRCTO (FB and XM Only) 4-97
4.3.79 MTSET (FB and XM Only) 4-97
4.3.80 MWAIT (FB and XM Only) 4-99
4.3.81 PRINT 4-99
4.3.82 PURGE 4-100
4.3.83 PUTSTR 4-100
4.3.84 R50ASC 4-101
4.3.85 RADS0 4-102
4.3.86 RCHAIN 4-102
4.3.87 RCTRLO 4-103
4.3.88 REPEAT 4-103
4.3.89 RESUME (FB and XM Only) 4-104
4.3.90 scca 4-104
4.3.91 SCOMP 4-105
4.3.92 SCOPY 4-106
4.3.93 SECNDS 4-107
4.3.94 SETCMD 4-107
4.3.95 STRPAD 4-108
4,3.96 SUBSTR 4-109
4.3.97 SUSPND (FB and XM Only) 4-110
4.3.98 TIMASC 4-111
4.3.99 TIME 4-112
4.3.100 TRANSL 4-112
4.3.101 TRIM 4-114
4.3.102 UNLOCK 4-114
4,.3.103 VERIFY 4-115
APPENDIX A DISPLAY FILE HANDLER A-1
A.l DESCRIPTION A-1
A.l.1 Assembly Language Display Support A-2
A.l.2 Monitor Display Support A-3
A.2 DESCRIPTION OF GRAPHICS MACROS A-4
A.2.1 .BLANK A-4
A.2.2 .CLEAR A-4

viii

CONTENTS (Cont.)

Page
A.2.3 . INSRT A-5
A.2.4 . LNKRT A-6
A.2.5 .LPEN A-7
A.2.6 .NAME A-10
A.2.7 . REMOV A-10
A.2.8 .RESTR A-10
A.2.9 .SCROL A-11
A.2.1C . START A-12
A.2.11 .STAT A-12
A.2.12 .STOP A-12
A.2.123 .SYNC/.NOSYN A-13
A.2.14 .TRACK A-13
A.2.15 . UNLNK A-14
A.3 EXTENDED DISPLAY INSTRUCTIONS A-15
A.3.1 DJSR Subroutine Call Instruction A-15
A.3.2 DRET Subroutine Return Instruction A-1l6
A.3.3 DSTAT Display Status Instruction A-16
A.3.4 DHALT Display Halt Instruction A-16
A.3.5 DNAME Load Name Register Instruction A-17
A.4 USING THE DISPLAY FILE HANDLER A-18
A.4.1 Assembling Graphics Programs A-18
A.4.2 Linking Graphics Programs A-18
A.5 PISPLAY FILE STRUCTURE A-20
A.5.1 Subroutine Calls A-20
A.5.2 Main File/Subroutine Structure A-22
A.5.3 BASIC-11 Graphic Software Subroutine
Structure A-23
A.6 SUMMARY OF GRAPHICS MACRO CALLS A-24
A.7 DISPLAY PROCESSOR MNEMONICS A-26
A.8 ASSEMBLY INSTRUCTIONS A-27
A.8.1 General Instructions A-27
A.8.2 VTBASE A-28
A.8.3 VTCALl1 - VTCAL4 A-28
A.8.4 VTHDLR A-28
A.8.5 Building VTLIB.OBJ A-28
A.9 VTMAC A-28
A.10 EXAMPLES USING GTON A-31
APPENDIX B SYSTEM MACRO LIBRARY B-1
APPENDIX C ADDITIONAL I/0O INFORMATION c-1
C.1 I1/0 DATA STRUCTURES c-1
c.1.1 Monitor Device Tables c-1
c.1l.1.1 $PNAME Table Cc-1
Cc.l.1.2 $STAT Table Cc=2
c.1.1.3 SDVREC Table c-4
Cc.1l.1.4 SENTRY Table C-4
c.l.1.5 $UNAM1 and $UNAM2 Tables Cc-5
C.1.1.6 SOWNER Table Cc-5
c.1l.1.7 Adding a Device to the Tables Cc-5
C.l.2 The Low Memory Protection Bitmap Cc-6
Cc.1l.3 Queue Elements c-7
c.1.3.1 I/0 Queue Element Cc-8
C.1l.3.2 Timer Queue Element c-9
C.1.3.3 Completion Queue Element c-10
C.1l.3.4 Synch Queue Element Cc-11
C.1.3.5 Fork Queue Element Cc-12

ix November 1978

CONTENTS (Cont.)

Page
C.1l.4 I/0 Channel Format Cc-12
Cc.2 FLOW OF EVENTS IN I/O PROCESSING C-13
c.3 STUDY OF THE RKO0S5 HANDLER C-15
Cc.4 SYSTEM DEVICE HANDLERS C-38
Cc.4.1 Assembling A System Device Handler c-38
C.4.2 System Device Handler Requirements C-39
C.4.3 The .DRBEG and .DREND Macros Cc-39
Cc.5 STUDY OF THE PC HANDLER C-42
C.6 RT-11 FILE FORMATS C-52
C.6.1 Object File Format (OBJ) C-52
C.6.2 Library File Format (OBJ and MAC) C-54
C.6.2.1 Library Header Format C-55
C.6.2.2 Library Directories C-56
C.6.2.3 Library End Block Format C-57
C.6.3 Absolute Binary File Format (LDA) C-57
C.6.4 Save Image File Format (SAV) C-59
C.6.5 Relocatable File Format (REL) C-61
C.6.5.1 REL Files without Overlays C-62
C.6.5.2 REL Files with Overlays C-63
c.7 THE DEVICE DIRECTORY C-64
c.7.1 RT-11 File Storage C-65
C.7.2 Directory Header Format C-66
C.7.3 Directory Entry Format Cc-67
c.7.3.1 Status Word C-68
C.7.3.2 Name and File Type C-68
C.7.3.3 Total File Length C-68
C.7.3.4 Job Number and Channel Number C-69
C.7.3.5 Date C-69
C.7.3.6 Extra Words C-69
C.7.4 Size and Number of Files c-71
C.7.5 Directory Segment Extensions C-72
c.8 MAGTAPE STRUCTURE Cc-74
c.9 CASSETTE STRUCTURE Cc-76
INDEX Index-1
FIGURES
FIGURE 1-1 RT-11 Memory Layout 1-4
1-2 RT-11 Priority Structure 1-14
1-3 Examples of Operations Performed After the
Last Block Written on Tape 1-37
1-4 Error Logging Subsystem Functional Block
Diagram 1-67
3-1 Page Address Register Assignments to Program
Virtual Address Space Pages 3-5
3-2 Examples of Window Creation 3-6
3-3 Relationship of Windows and Regions 3-7
3-4 Defining Windows for Mapping 3-8
3-5 Regions Created In Extended Memory 3-10
3-6 Typical Mapping Relationship 3-11
3-7 Memory Map with Virtual Foreground Job
Installed 3-13
3-8 RT-11 Privileged Mapping 3-16
3-9 Window Definition Block 3-17
3-10 Region Definition Block 3-22
c-1 Device Status Word c-3
c-2 I/0 Queue Element Format Cc-8

X November 1978

CONTENTS (Cont.)

Page
FIGURES (Cont.)
Cc-3 Timer Queue Element Format Cc-10
c-4 Completion Queue Element Format Cc-11
Cc-5 Synch Queue Element Format Cc-11
Cc-6 Fork Queue Element Format c-12
c-7 I/0 Charpnel Description c-12
c-8 Channel Status Word Cc-13
c-9 Flow of Events in I/O Processing Cc-14
Cc-10 RKO5 Handler Listing Cc-17
c-11 The .DRBEG and .DREND Macros C-40
Cc-12 PC Handler Listing C-43
C-13 Modules Concatenated by Byte C-53
Cc-14 Formatted Binary Format C-54
Cc-15 Library File Format C-55
C-16 Object Library Header Format C-55
Cc-17 Macro Library Header Format C-56
C-18 Library Directory Format C-56
Cc-19 Library End Block Format C-57
Cc-20 Absolute Binary Format (LDA) C-58
c-21 REL File Without Overlays C-62
Cc-22 Relocation Information Format C-62
C-23 REL File with Overlays C-64
C-24 Device Directory Format C-65
Cc-25 File-Structured Device C-65
C-26 Tentative Entry C-65
c=-27 Two Tentative Entries C-66
Cc-28 Permanent Entries C-66
Cc-29 Directory Entry Format C-67
Cc-30 Status Word C-68
Cc=-31 Date Word C-69
C-32 RT-11 Directory Segment c-70
Cc-33 Initialized Cassette Format Cc-76
Cc-34 Cassette With Data Cc=-77
Cc-35 Physical End of Cassette c-77
TABLES

TABLE 1-1 Sequence Number Values for .ENTER Requests 1-32
1-2 Sequence Number Values for .LOOKUP Requests 1-34
1-3 DEC 026/DEC 029 Card Code Conversions 1-55
1-4 Error Logging Subsystem Components 1-66
1-5 ERRUTL Options 1-71
1-6 PSE Options 1-73
1-7 SYE Options 1-75
2-1 Summary of Programmed Requests 2-19
2-2 Requests Requiring the USR 2-25
2-3 Soft Error Codes (SERR) 2-68
3-1 Virtual Address Boundaries 3-18
3-2 Extended Memory Error Codes 3-29
3-3 Extended Memory Status Words 3-30
4-1 Summary of SYSF4 Subprograms 4-8
4-2 Special Function Codes (Octal) 4-69
c-1 Low Memory Bitmap Cc-6
c-2 Information in Block 0 C-59
Cc-3 Directory Header Words Cc-67
c-4 Entry Types C-68
Cc-5 ANSI Magtape Labels in RT-11l Cc-75
c-6 Cassette File Header Format c-78

x.1l November 1978

PREFACE

The Advanced Programmer's Guide is intended as a reference document
primarily for advanced RT-11 users (including FORTRAN users) and
MACRO-11 assembly language programmers. Although there are no
absolute prereguisites for reading and understanding the contents of
this manual, it is recommended that the reader be familiar with RT-11
operating procedures, PDP-11 system architecture, PDP-11 machine
language, MACRO-11 assembly language and if appropriate, another
higher level language such as FORTRAN 1IV.

The Advanced Programmer's Guide consists of the following four
chapters and three appendices:

Chapter 1, 1I/0 Programming Conventions - This chapter presents
information on RT-11 supported 1/0 devices, associated device handlers
and the various monitor services offered by the RT-11 operating
system.

Chapter 2, Programmed Requests - This chapter describes all of the
RT-11 programmed requests and provides information on how to use them
to develop user-written programs. Program examples are also included
to facilitate the explanations.

Chapter 3, Extended Memory - This chapter deals exclusively with the
RT-11 concept of memory extension. The memory extension concepts and
all memory extension programmed requests are explained in this
chapter. An example program utilizing all memory extension programmed
requests is included to assist users in developing their own programs
to use this new feature.

Chapter 4, System Subroutine Library - This chapter describes all of
the RT-11 FORTRAN-callable subroutines. This chapter also contains
examples of the calls and most of the subroutines.

Appendix A, Display File Handler - This appendix describes the
graphics support for the RT-11 operating system. Program examples are
included to assist users in developing their own display program.

Appendix B, System Macro Library - This appendix is a listing of the
RT-11 System Macro Library (SYSMAC), which provides the expansions for
all RT-11 macro instructions.

Appendix C, Additional I/0 1Information - This appendix provides
software support information for RT-11 programmers.

xi November 1978

CHAPTER 1

I/0 PROGRAMMING CONVENTIONS

This chapter introduces the MACRO-11 assembly language programmer to
the basic concepts and features of device handlers and interrupt
service routine for the RT-11 operating system. This system includes
three compatible monitors and a variety of programming development

tools and system utilities. The monitors and their designations are
as follows:

SJ - Single-Job
FB - Foreground/Background
XM - Extended Memory

The SJ monitor is a single user, single job system restricted to 28K
words of memory. The FB monitor is a single user, two job system also
restricted to 28K words of memory. PDP-11/03 systems that include the
MSV11-DD memory board with a special jumper can access 30K words of
memory under SJ and FB. The XM monitor is an extension of the FB
monitor that supports up to 124K words of physical memory.
Operational XM monitors are not distributed on the RT-11 kit. A
SYSGEN must be performed to create these monitors and their device
handlers. See the RT-11 System Generation Manual for details.

In addition to the monitors already discussed, the SYSGEN program
allows the user to create a custom monitor, containing those features
required in a particular application. Such a custom monitor can have
more or fewer features and can be larger or smaller than the standard
monitor (see the RT-11 System Generation Manual for details).

Single-job operation supports only one program in memory at any time;
execution of the program continues until either it is completed or it
is physically interrupted by the user at the console.

In a foreground/background environment (under either the FB or XM
monitor), two independent programs can reside 1in memory. The
foreground program is given priority and executes until it
relinquishes control to the background program; the background
program executes until control is again required by the foreground

program. This sharing of system resources greatly increases the
efficiency of processor usage.

RT-11 is fast, reliable, and easy to use. It incorporates a
sophisticated set of programming tools for the applications or

end-user programmer. These tools and techniques are discussed in
subsequent sections.

1-1

I/0 PROGRAMMING CONVENTIONS

1.1 MONITOR SOFTWARE COMPONENTS
The main RT-11 monitor software components are:
Resident Monitor (RMON)

Keyboard Monitor (KMON)

User Service Routine (USR) and Command String Interpreter (CSI)

Device Handlers

1.1.1 Resident Monitor (RMON)

The resident monitor is the permanently memory-resident part of RT-11.
The programmed requests for most services of RT-11 are handled by
RMON. RMON also contains the console terminal support (TT.SYS is not
resident in SJ), error processor, system device handler, EMT
processor, and system tables.

1.1.2 Keyboard Monitor (KMON)

The keyboard monitor provides communication between the user at the
console and the RT-11 system. Keyboard monitor commands allow the
user to assign logical names to devices, run programs, load device
handlers, invoke indirect command files, and control
foreground/background operations. A dot at the left margin of the
console terminal page indicates that the keyboard monitor is in memory
and 1is waiting for a user command. KMON is 7400 octal (or 3840
decimal) words long in RT-11 V03B distributed BL, SJ, and FB monitors.

1.1.3 User Service Routine (USR)

The user service routine provides support for the RT-11 file structure
and handles some of the programmed requests for RT-11. It loads
device handlers, opens files for read or write operations, deletes and
renames files, and creates new files. The Command String Interpreter
is part of the USR and can be accessed by any program to process a
command string. In XM, the USR is permanently resident.

1.1.4 Device Handlers

Device handlers for the RT-11 system perform the actual transfer of
data to and from peripheral devices. New handlers can be added to the
system as files on the system device and can be interfaced to the
system easily by wusing the keyboard monitor INSTALL command (see
Chapter 4 of RT-11 System User's Guide).

1.2 GENERAL MEMORY LAYOUT

The diagrams in Figure 1-1 show how components of the RT-11 system are
arranged in memory.

Diagram A illustrates a single-job system just after it was
bootstrapped. Location 54 in the system communication area contains
the value x, which represents the bottom address of RMONSJ.

1-2

1/0 PROGRAMMING CONVENTIONS

Diagram B shows the same single-job system with a background job
executing. KMON is not resident in memory while the job is running.
If the user job needs the memory space, it can swap over the USR.

Diagram C shows a foreground/background system. Two handlers were
made resident by the LOAD command. They reside below RMONFB and above
the USR. There is a background job running, so KMON is not shown in
memory. If the background job needs the memory space, it can swap
over the USR.

Diagram D illustrates the same foreground/background system. There is

a foreground job running. There is no background job, so KMON is in
memory.

Diagram E shows the same foreground/background system. Both the
foreground and the background jobs are in memory. The background job
can swap the USR at its default location Jjust below the foreground
job. The foreground 7job must allocate space within its own program
area in order to swap in the USR.

Diagram F shows an extended memory system. There are two loaded
device handlers, and both a foreground and a background job are in
memory. Note that the USR is always resident.

Diagram G illustrates some characteristics of RT-11's memory
allocation scheme. The third device handler in the diagram was loaded

after the foreground job was started. If the foreground job were
stopped and unloaded, the space it occupied would be placed in the
free memory list. If the user needed to load another handler, it

would reside in that free space if it could fit. If it did not fit,
it would reside below the third handler. The USR and KMON slide down
in memory to accommodate such new additions.

The memory area directly above the USR contains indirect file
information. This section is always located just above the USR, and
moves up or down in memory along with the USR. 1If, for example, the
third handler were unloaded, the USR and the KMON would slide up in
memory, and reside just below the foreground job.

I/0 PROGRAMMING CONVENTIONS

A B
32K 32K -
DEVICE REGISTERS DEVICE REGISTERS
28K 28K
SYSTEM DEVICE HANDLER SYSTEM DEV.CE HANDLER
RMONSJ AND ITS STACK RMONSJ AND ITS STACK
X x N
USR JHR
x-1000 N

KMON AND ITS STACK

USEFR JOB
J. AVAILABLE SPACE =
T FOR USER JOB

—3y

1000\ — o _
DEFAULT USER IJOB STACK SPACE
500 500
60 DEVICE INTERRUPT VECTORS DEVICE INTERRUPT VECTORS
60
57
40 SYSTEM COMMUNICATION AREA i; SYSTEM COMMUNICATION AREA
37
> HARDWARE/SOFTWARE TRAP VECTORS 37 HARDWARE/SOFTWARE TRAP VECTORS
0 0
SJ When First Bootstrapped SJ After a User Job is Started
C D
32K 32K
DEVICE REGISTERS DEVICE REGISTERS
28K 28K
SYSTEM DEVICE HANDLER SYSTEM DEVICE HANDLER
RMONFB RMONFB
X X
LOADED HANDLER 1 LOADED HANDLER 1
LOADED HANDLER 2 LOADED HANDLER 2
USR FOREGROUND JOB AND ITS STACK
USR
KMON AND ITS STACK
BACKGROUND JOB
1000 | . __ __ _ _ —_— —]
DEFAULT BACK|/GROUND JOB
500 STACKY SPACE 500
DEVICE INTERRUPT VECTORS 60 DEVICE INTERRUPT VECTORS
60
57
i; SYSTEM COMMUNICATION AREA 40 SYSTEM COMMUNICATION AREA
37 37
0 HARDWARE/SOFTWARE TRAP VECTORS 0 HARDWARE/SOF TWARE TRAP VECTORS
FB With Loaded Device Handlers and a Background Job FB With Loaded Device Handlers and a Foreground Job

Figure 1-1 RT-11 Memory Layout

32K

28K

1000

500

57

40
37

1/0 PROGRAMMING CONVENTIONS

E

DEVICE REGISTERS

SYSTEM DEVICE HANDLER

RMONFB

LOADED HANDLER 1

LOADED HANDLER 2

FOREGROUND JOB AND ITS STACK

USR SWAP LOCATION
FOR BACKGROUND JOB

BACKGROUND JOB

DEFAULT BACK [GROUND JOB
STACK YSPACE

DEVICE INTERRUPT VECTORS

SYSTEM COMMUNICATION AREA

HARDWARE/SOF TWARE TRAP VECTORS

FB With Loaded Device Handiers
and Foreground and Background Jobs

F
Top of
Memory DEVICE REGISTERS
b~
o EXTENDED MEMORY N
28K
SYSTEM DEVICE HANDLER
RMONXM
X
LOADED HANDLER 1
LOADED HANDLER 2
FOREGROUND JOB AND ITS STACK
USR (ALWAYS RESIDENT)
BACKGROUND JOB
1000 e - = ———
DEFAULT BACK| GROUND JOB
500 STACKY SPACE
60 DEVICE INTERRUPT VECTORS
Z; SYSTEM COMMUNICATION AREA
37
HARDWARE/SOFTWARE TRAP VECTORS
0
XM With Loaded Handlers
and Foreground and Background Jobs
G

“op of
Memory

DEVICE REGISTERS

RMONSJ, RMONFB, OR RMONXM

LOADED HANDLER 1

LOADED HANDLER 2

FOREGROUND JOB (IF FB OR XM)
AND ITS STACK SPACE

LOADED HANDLER

3

INDIRECT COMMAND FILE AND
MONITOR COMMAND EXPANSION DATA

USR

KMON (IF NO BACKGROUND JOB)

500

60

DEVICE INTERRUPT VECTORS

57
40

SYSTEM COMMUNICATION AREA

37

HARDWARE/SOFTWARE TRAP VECTORS

Figure 1-1

(Cont.)

General Example

RT-11 Memory Layout

I/0 PROGRAMMING CONVENTIONS

In addition to FRUN, which 1loads foreground jobs, other monitor
commands can alter the memory map; these are R, RUN, GET, LOAD,
UNLOAD, GT ON, GT OFF, and indirect command files invoked by "@". The
LOAD command causes device handlers to be resident until an UNLOAD
command is performed. The UNLOAD command removes handlers that have
been 1loaded. The GT ON and GT OFF commands cause terminal service to
utilize the VT11l or VS60 display hardware. RT-11 maintains a free
memory list to manage memory. Memory space is always reclaimed if
possible by moving KMON/USR up. If it cannot be reclaimed, it is
placed in the free memory list.

1.3 WRITING USER INTERRUPT SERVICE ROUTINES

Certain programming conventions must be observed in RT-11 when writing
user interrupt service routines. All device handlers follow these
conventions. The procedures described in this section are necessary
and must be followed to prevent system failures when jobs are running
under RT-11.

1.3.1 sSetting Up Interrupt Vectors

Devices for which no RT-11 handler exists must be serviced by the user
program. For example, no LPS11 device handler exists; to use an
LPS11, the user must incorporate the interrupt service routine within
the program or write the device handler himself. It 1is the
responsibility of the program to set up the vector for devices such as
this. The recommended procedure 1is not to simply move the service
routine address and 340 into the desired vector; rather, it 1is to
precede the operation with a .PROTECT macro call. The .PROTECT
ensures that neither the other job nor the monitor already has control
of that device (FB and XM only). If the .PROTECT is successful, the
vector can be initialized.

1.3.2 Interrupt Priorities

The status word for each interrupt vector should be set such that when
an interrupt occurs, the processor takes it at level 7. Thus, a
device that has its vectors at 70 and 72 has location 70 set to its
service routine; location 72 contains 340. The 340 causes the
service routine to be entered with the processor set to inhibit any
further device interrupts.

1.3.3 Interrupt Service Routine

If conventions are followed, the processor priority will be 7 when an
interrupt occurs. The first task of the interrupt cservice routine is
to declare that an interrupt has occurred and to lower the processor
priority to the correct value. This can be done by using the .INTEN
macro call. The call is:

. INTEN priority
or
. INTEN priority,pic

The .INTEN call is explained in Chapter 2, Programmed Reguests. On
return from the .INTEN call, the processor priority is set properly;

1/0 PROGRAMMING CONVENTIONS

registers 4 and 5 have been saved and can be used without the
necessity of saving them again. All other registers must be saved and
restored by the program if they are used.

For example, a user device interrupts at processor priority 5:
DEVPRI=5

DEVINT: .INTEN DEVPRI ;NOTE, NOT #DEVPRI

RTS PC

If the contents of the processor status word, loaded from the
interrupt vector, are significant to the interrupt service routine
(such as the condition bits), the PS should be moved to a memory
location (not the stack) before issuing the .INTEN. The interrupt

service routine uses the monitor stack and should avoid excessive use
of stack space.

1.3.4 Return From Interrupt Service

When an interrupt is serviced, instead of issuing an RTI to return
from the interrupt, the routine must exit with an RTS PC. This RTS PC
returns control to the monitor (assuming that .INTEN has been
executed), which then restores registers 4 and 5, and executes the
RTI.

1.3.5 1Issuing Programmed Requests at the Interrupt Level

Programmed requests from interrupt routines must be preceded by a
.SYNCH call. This ensures that the proper job is running when the
programmed request is issued. The .SYNCH call assumes that nothing is
pushed onto the stack by the user program between the .INTEN call and
the .SYNCH call. On successful completion of a .SYNCH, RO and Rl have
been saved and are free to be used. R4 and R5 are no longer free, and
should be saved and restored if they are to be used. Programmed
requests that require USR action must not be called from within
interrupt routines.

1.3.6 User Interrupt Service Routines with the XM Monitor

There are three restrictions to using user interrupt service routines

with the XM monitor. See Section 3.6.1 of this manual for specific
details.

1.4 DEVICE HANDLERS

This section deals with the device handlers that are part of the RT-11
operating system. Any device dependent information or general
information required by the user is contained here. No mention of a
handler implies that no special conditions must be met to use that
device (all disks, except diskette, RLOl, and RK06/07 are in this
category, and therefore are not covered here).

I/0 PROGRAMMING CONVENTIONS

1.4.1 Differences Between V2 and V3 Device Handlers

The RT-11 device handler format changed slightly from version 2C to
version VO03. (There are no changes from version 3 to version 3B.)
Most of these changes were brought about by the addition of a system
generation process and many new handler options in V03. Changes are

implemented through a new set of handler macros, which make conversion
easier.

The new handler options being offered in version 3 and later releases
include: error logging, I/0 time-out, extended memory support,
multi-vectored device support and fork level processing. All but fork
processing are options that are determined at SYSGEN time. The
monitor and the set of handlers must have matching options, so a
common option definition file must be used to assemble all the
components (drivers and monitors) of the system.

In addition, RT-11 version 2C and version 3 non-NPR device handlers
follow different conventions for signalling the end of file condition.
In version 2C, a non-NPR device handler sets the EOF bit in the
channel status word as soon as it detects an end of file condition on
the device (for example, no more paper in the paper tape reader). It
can set the EOF bit even if the program's buffer is only partly full.
Thus, the program may find the EOF bit on after a transfer that
returns some usable data. Programs written for version 2C check the
EOF bit after using the last data read.

In contrast, a version 3 non-NPR device handler does not set the EOF
bit in the channel status word if the handler returns any usable data
to the program. When such a handler detects an end of file condition
on the device, it checks to see whether any data has been loaded in
the program's buffer. If the buffer is not empty, the handler
remembers the end of file condition but does not set the EOF bit.
Instead, it fills the rest of the program's buffer with zeros and
returns. The next time the handler is entered, it finds the
remembered end of file condition, sets the EOF bit, and returns an
empty buffer. Programs written for version 3 check the EOF bit as
soon as the read is complete; they assume that the buffer is empty if
the bit is on.

NOTE

Device handlers distributed with RT-11,
Version 1, will not work properly with
Version 2. Version 2 device handlers
require changes to utilize all features
of the version 3 release. Any
user-written device handlers should be
rewritten to comply with the Version 3
conditions. Instructions for
interfacing new handlers to RT-11 are
provided in the following portions of
Section 1.4 of this manual.

1-8 September 1978

1/0 PROGRAMMING CONVENTIONS

1.4.2 The Parts of a Handler

Every RT-11 format handler has the following seven parts: the
preamble, SET options, header, I/0 initiation code, asynchronous trap
processing code, I/0 completion code, and terminator. The following
sections describe the format of each of these parts. An example
program of a device handler is included at the end of this section.

In the following text, "dd" represents the two-character physical
device name.

1. Preamble

The preamble typically contains the trap and device register
definitions and global declarations. 1In version V03 several
new items are required in the handler preamble:

a. An .MCALL statement is needed for the set of driver
macros used in the handler.

.MCALL .DRBEG,.DRAST,.DREND,.DRFIN

b. The device size (former contents of $DVSIZ table) and the
device status word (contents of $STAT table) must be
defined in the preamble, using the mnemonics ddDSIZ and
ddsTsS. These values are assembled into the handler
.ASECT (block 0 of the SYS file) and are extracted from
the handler file when needed by the .DSTATUS request.

c. The default values of handler system generation options
can be included in the preamble section. They are not

1-8.1 September 1978

1/0 PROGRAMMING CONVENTIONS

essential if a system definition file is always included
when assembling the handler. Otherwise, assembly errors
can occur.

The default definitions currently include:

.1IF NDF MMGST,MMGST=0 ;NO 18-BIT I/0
.IIF NDF ERLG,ERLG=0 ;NO ERROR LOGGING
.IIF NDF TIMSIT,TIM$SIT=0 ;NO TIME-OUT

d. The .QELDF macro can be invoked to symbolically define
all queue element offsets for the specified set of system
generation options. .QELDF must be invoked after the
system generation options have been defined. See Section
1.4.4.5 for the queue element offset symbolics.

SET Options

The option list starts at 400 in the handler .ASECT and is
terminated by a zero word. Devices that can be used as the
system device can have SET options when they are assembled
and linked for use as non-system devices.

The system generation procedure permits the separate assembly
of the system device. The SET options should be enclosed in
conditionals, being assembled only if the symbol $SYSDV is
undefined. The options are not assembled into a system
device and the SET command is ineffective. The monitor must
be patched to change an option in the system device. Section
1.4.3 describes how to add a SET option to a handler.

Header

The header contains standard data in fixed locations used by
the monitor when it 1is interfacing with the handler. The
header has two forms; one for a single vector device and one
for a multiple vector device.

a. Single-vector handlers

The device handler header 1is generated by the macro
.DRBEG. This macro has the following form:

.DRBEG name,vec,dsiz,dstat

where:

name is the two-letter device name.

vec is the device vector.

dsiz is the number of 256-word blocks of storage
on the volume (0 if non-directory
structured); returned to user by .DSTATUS
request.

dstat is the device status word (not to be

confused with hardware CSR); returned to
user by .DSTATUS request.

This macro generates the handler .ASECT and .PSECT. It
also generates any necessary globals, labels and the
queue header. The load point of the handler is given the

symbolic name ddSTRT. The gueue header words have the
names ddLQE and ddCQE.

1-9

I/0 PROGRAMMING CONVENTIONS

For example: .DRBEG dd,ddvEC,ddDS1z,ddSTS
.DRBEG RK,220 ,RKDSIZ ,RKSTS

b. Multi-vector handlers

The monitor can load device handlers having more than one
vector. This feature facilitates the use of
multi-controller devices. In a driver with multiple
vectors, the word normally containing the interrupt
vector contains an offset to a table of vector triplets.
The difference in meaning of the word is flagged by
setting bit 15, The first word of the multi-vector
handler header is as follows:

+WORD <table-.>/2-1+4100000

where:
table is a table of vector triplets of the form:
VECTOR
TRAP ADDRESS-.
PS

The table is terminated with a zero word.

The .DRBEG macro is similar to the single vector version
with the addition of a final argument, vtbl,

-DRBEG name,vec,dsiz,dstat,vtbl
where:

vtbl is the name of a table of vector triplets in a
handler requiring multiple vectors.

For example: .DRBEG PC,PCVEC,PCDS1Z,PCSTS,PTBL

DX, DY, and PC are devices that use this feature.

I/0 Initiation Section

This section is entered in system state (with context
switching inhibited) by the queue manager. All registers are
available for use. The queue element to be processed is
pointed to by ddCQE. The I/0 initiation section must return
with a RTS PC.

Asynchronous Trap Entry Points

The asynchronous trap entry points consist of the interrupt
entry and abort entry. The AST entry point branch table is
Ccreated by a macro called .DRAST. This macro has the form:

.DRAST name,pri[,abo]

where:
name is the two-letter device name.
pri is the priority at which the interrupt service

is to execute.

1-10 September 1978

1/0 PROGRAMMING CONVENTIONS

abo is the optional abort entry code symbolic label
(if not specified, an RTS PC is generated).

The .DRAST macro generates the AST branch table and an .INTEN
call for the interrupt service routine. The 1interrupt
routine has the symbolic name ddINT, which is declared global
by the macro if the device is to be a system device.
For example:

.DRAST RK,5

.DRAST DT,6,DTSTOP
In a multi-vector handler, the abort entry point is assumed
to precede the interrupt entry point having the label dd4INT,
where dd is the two-letter device name declared initially in
the .DRBEG macro.
I1/0 Completion

A macro called .DRFIN is provided for completing an 1I/0
transfer and returning the queue element. The macro call is:

.DRFIN name
where name is the two-letter device name.
This macro points R4 to the handler queue head and jumps to
the monitor I/0 completion routine. Its expansion 1is
identical to the current procedure and it is provided as a
shorthand method of completing a transfer. It also serves to
isolate system dependencies from the handler code.
For example:

.DRFIN RK

expands to:

MOV PC,R4

ADD #RKCQE-. ,R4

MOV @#54 ,R5

JMP @270 (RS)

Handler Termination

A macro is provided to terminate the device handler code.
Wwhen invoked, the macro generates a table of pointers to
monitor routines (interrupt entry, error logging, etc.), and
computes the size of the handler load module for use by
.FETCH. The macro call is:

.DREND name
where name is a two-letter device name.
For example:

.DREND RK

I/0 PROGRAMMING CONVENTIONS

1.4.3 Adding a SET Option

The keyboard monitor SET command permits certain device handler
parameters to be changed from the keyboard. For example, the width of
the line printer on a system can be SET with a command such as:

SET LP WIDTH=80

This is an example of a SET command that requires a numeric argqument.
Another type of SET command is used to indicate the presence or
absence of a particular function. An example of this is a SET command

to specify whether an initial form feed should be generated by the LP
handler:

SET LP FORM (generate initial form feed)
SET LP NOFORM (suppress initial form feed)

In this case, the FORM option can be negated Dby appending the NO
prefix.

The SET command is entirely driven by tables contained in the device
handler itself. Making additions to the list of SET options for a
device is easy, requiring changes only to the handler, and not to the
monitor. This section describes the method of creating or extending
the list of SET options for a handler. The SET command is described
in Chapter 4 of the RT-11 System User's Guide.

Device handlers have a file name in the form Xx.5YS, where xx 1is the
two-letter device name (for example, LP.SYS). Handler files are
linked in memory image format at a base address of 1000, in which a
portion of block 0 of the file is used for system parameters. The
rest of the block is unused, and block 0 is never FETCHed into memory.
The SET command uses the area in block 0 of a handler from 400 to 776
(octal) as the SET command parameter table. The first argument of a
SET command must always be the device name; (LP in the previous
example command lines). SET looks for a file named XxX.SYS (in this
case LP.SYS) and reads the first two blocks into the USR buffer area.
The first block contains the SET parameter table, and the second block
contains handler code to be modified. When the modification is made,
the two blocks are written out to the handler file, effectively
changing the handler. The SET parameter table consists of a sequence
of four-word entries. The table is terminated with a zero word; if
there are no options available, location 400 must be zero. Each table
entry has the form:

.WORD value
.RADS0 /option/ (two words of Radix-50)
.BYTE <routine-400>/2
.BYTE mode
where:
value is a parameter passed to the routine in register 3.
option is the name of the SET option; for example, WIDTH or

FORM.

routine is the name of a routine following the SET table that
does the actual handler modification.

mode indicates the type of SET parameter:

a. Numeric argument - byte value of 100
b. NO prefix valid - byte value of 200

1-12

I/0 PROGRAMMING CONVENTIONS

The SET command scans the table until it finds an option name matching
the input argument (stripped of any NO prefix). For the first example
command string, the WIDTH entry would be found. The information in
this table entry tells the SET processor that O.WIDTH is the routine
to call, that the prefix NO is illegal and that a numeric argument is
requirea. Routine O.WIDTH uses the numeric argument passed to it to
modify the column count constant in the handler. The value passed to
it in R3 from the table is the minimum width and is used for error
checking.

The following conventions should be observed when adding SET options
to a handler:

1. The SET parameter tables must be located in block 0 of the
handler file and should start at location 400. This is done
by using ar .ASECT 400.

2. Each table entry is four words long, as described previously.
The option name may be up to six Radix-50 characters long,
and must be left-justified and filled with spaces if
necessary. The table terminates with a zero.

3. The routine that does the modification must follow the SET
table 1in block 0. It 1is called as a subroutine and
terminates with an RTS PC instruction. If the NO prefix was
present and valid, the routine is entered at entry point +4.
An error is returned by setting the C bit before exit. If a
numeric argument is required, it is converted from decimal to
octal and passed in RU. The first word of the option table
entry is passed in R3.

4. The code in the handler that is modified must be in block 1
of the handler file; that is, in the first 256 words of the
handler.

5. Since an .ASECT 400 was used to start the SET table, the
handler must start with an .ASECT 1000.

6. The SET option should not be used with system device
handlers, since the .ASECT will destroy the bootstrap and
cause the system to malfunction.

1.4.4 Monitor Services for Device Handlers

The RT-11 monitor provides a set of services for device handlers.
These services are located in the resident monitor and can be shared
by all device handlers to minimize overall system size and simplify
the development and conversion of handlers. The services consist of
interrupt entry processing, fork 1list processing, error 1logging,
request time-out, and extended memory support. The interrupt entry
processing and the fork 1list processing are permanent monitor
features. The rest can be included or excluded at SYSGEN time. The
following sections discuss the extent of each service and describe
when it should be used.

1.4.4.1 Use of .FORK Process - RT-11 provides handlers with the
capability of executing code as a serialized, zero-priority system
process. This process, called a fork process, |is similar to the
service provided 1in other PDP-11 operating systems. A handler can
request a fork process while at interrupt level (that 1is, after the

I/0 PROGRAMMING CONVENTIONS

-INTEN request). The stack must be clean before the .FORK request is
issued. That is, the stack must be in the same state when the .FORK
request is issued as it was after the .INTEN request was processed.
Anything pushed onto the stack after the .INTEN request must be popped
off the stack before the .FORK request is issued. Control returns to
the line following the .FORK request when the fork request is granted.
See Figure 1-2 for a diagram of RT-1l's priority structure.

The .FORK request causes the interrupt to be dismissed and adds the
driver's request to a first-in/first-out (FIFO) list. The fork gueue
manager is activated after the last interrupt is Gismissed but before
the scheduler 1is called. Drivers are called serially in FIFO order,
at priority level 0 and system state (that is, monitor stack, context
switching inhibited). Registers R4 and R5 are preserved through the
-FORK request, and in addition, registers RO-R3 are available for use
at fork level.

Processor Priority Software Priority
7 P—
6 - Device Handlers
and
5 I Interrupt Service
Routines
4 PR
Fork =™ Fork level

Foreground Completion Routines
FG—<C L
Foreground Mainline

8G - Background Completion Routines
Background Mainline

Monitor’s idle loop

0 Null Job

Figure 1-2 RT-11 Priority Structure

The handler must provide a four-word fork queue element that is used
to preserve R4, R5 and the return PC while in the fork queue. The
first word of the fork queue element is the link word and must be zero
when the .FORK request is issued. A non-zero link implies the queue
element is in use. However, the monitor does not check this case.
This implies that the interrupt service code should check the link
word before issuing the .FORK if the code could possibly be used in a
re-entrant way.
The .FORK request has the form:

.FORK frkblk
where:

frkblk is the name of fork list element.
For example:

.FORK ddFBLK

1-14

I1/0 PROGRAMMING CONVENTIONS

where:
ddFBLK is defined as
ddFBLK: .WORD 0,0,0,0

The .FORK request has several applications in a real-time systems
environment. It permits lengthy but non-critical interrupt processing
to be postponed until all other interrupts are dismissed. 1Its use in
the card reader and line printer drivers solves some of the latency
problems encountered in remote batch and DECNET applications.

For example, the card reader driver internally buffers 80 columns of
card data. It receives an interrupt once per column, and translates
and moves the character into its internal buffer at interrupt level.
It then moves its internal buffer to the user buffer, a process that
can take up to 2.5 msec. In version 2C, this process took place at
priority level six, which meant that interrupts at this priority and
lower could be locked out for this time. This can cause data late
errors on communications devices when the card reader is active at the
same time.

This problem is not solved by dropping priority to zero since the card
reader can have interrupted a lower priority device. Lowering
priority causes re-entrancy problems in the other device drivers.
Using a .SYNCH does not always solve the problem. The SJ monitor only
simulates a .SYNCH and drops priority to zero, which produces the same
re-entrancy problems. The FB monitor must perform a context switch
since .SYNCH returns to the caller in user context, running on the
user stack. This 1is a lengthy process and does not occur at all if
there is a compute bound foreground job.

The .FORK request is the optimum solution to the problem. It returns
at priority =zero, but only when all other interrupts have been
dismissed and before control is returned to the interrupted wuser
program.

Actual fork support is not provided in SJ unless timer support is
generated in the monitor. Instead, the .FORK is simulated to the
extent that registers RO-R3 are saved before the driver is called
back. Beyond that, no serialization of interrupts is provided.

1.4.4.2 Use of .SYNCH - The .SYNCH request is provided to allow
device drivers and user interrupt service routines to issue programmed
requests. When issued, the .SYNCH regquest dismisses the interrupt and
queues the .SYNCH block provided on the I/O completion qgueue (in FB
and XM°monitors). The job is flagged as having an I/0 completion
routine pending, which causes the scheduler to switch in the job.

This procedure is necessary since programmed reguests must be issued
in job context, and interrupts occur asynchronously. The .SYNCH
request forces a context switch so the code following the .SYNCH runs
in job context. In the SJ monitor the .SYNCH request simulates the
register manipulations of the FB .SYNCH processor and then returns
immediately to the caller at priority level 0. This occurs because
the SJ monitor has a single job context and does not use an I/0
completion gqueue. This is the reason the .SYNCH reguest cannot be
used to simulate the functions of the .FORK request in SJ systems.

The .SYNCH request can be issued either after an .INTEN request or

after a .FORK request. The handler must not have pushed anything on
the stack when the .SYNCH is issued.

1-15

I/0 PROGRAMMING CONVENTIONS

The XM monitor must also change the mapping mode when calling 1I/0
completion routines. Regular I/0 completion routines are run in user
context and user mapping. The .SYNCH routines are run in user
context, but the XM monitor requires all interrupt service routines
(both user and system handler) to run in kernel mode. Thus, under the
XM monitor, the .SYNCH request does not change mapping mode from

kernel to user mode, but runs the .SYNCH routine in user context and
kernel mapping.

1.4.4.3 Multi-Vector Support - A feature is provided to 1load device
handlers having more than one vector. Previously the handler
initialization code was required to set up the extra vectors. This
feature makes it easier to support multi-vector devices

The presence of multi-vector support is transparent to single-vector
handlers.

The handler header normally has the form:

Vector

Word Offset to Interrupt Routine
PS

End of Queue Pointer

Head of Queue Pointer

In a handler with multiple vectors, the word containing the interrupt
vector contains an offset to a table of vector triplets. The
difference in meaning of this word is flagged by setting bit 15. The
first word of the handler header contains:

.WORD <table-.>/2-1+100000
where table is a table of vector triplets of the form:

VECTOR

TRAP ADDRESS-.

PS
The table is terminated with a zero word. For example, a handler to
handle both input and output for a PCll High Speed Paper Tape
Punch/Reader would have a header, generated by .DRBEG, of the form:

.WORD <PTBL-.>/2-1+100000 ;OFFSET TO TABLE OF VECTORS

.WORD PRINT-. ;OFFSET TO FIRST INTERRUPT
.WORD 340 ;DUMMY PRIORITY

.WORD 0

.WORD 0

where PTBL has the form:

PTBL: .WORD 70 :READER VECTOR
.WORD PRINT-. ;READER TRAP ROUTINE OFFSET
.WORD 340
.WORD 74 ;s PUNCH VECTOR
.WORD PPINT-. ;PUNCH TRAP ROUTINE OFFSET
.WORD 340
.WORD 0 ;END OF TABLE

1-16 September 1978

I/0 PROGRAMMING CONVENTIONS

Note that only tne status bits in the PS word specified are actually
loaded. The priority is always forced to 7. When a single vector is
loaded, the .FETCH code completely ignores the PS word specified,
setting the value 340 into the vector PS word.

The macro .DRBEG contains an optional fifth parameter that points to
the table.

.DRBEG name,vec,dsiz,dstat,vtbl
where:

vtbl is the name of a table of vector triplets 1in a driver
requiring multiple vectors.

For example:

.DRBEG PC,PCVEC,PCDSIZ,PCSTS,PTBL

1.4.4.4 Error Logging - Error logging is an option provided to
enhance system reliability. Its effective use requires that
appropriate device handlers report on their activity so that a log of
system I/0 activity can be collected and analyzed. Both successful
and unsuccessful transfers are logged. Section 1.6 describes error
logging in detail. Section 1.6.3.3 describes how to call the error
logger from a user-written device handler.

1.4.4.5 Extended Memory Support for Handlers - RT-11 supports systems
with 128K words of memory. All device handlers, both NPR
(non-processor request) and programmed transfer, support extended
memory. RT-11 has a set of subroutines that are available to all
drivers. There are three routines that move a byte to or from the
user buffer or move a word to the user buffer for programmed transfer
devices. Another routine converts the buffer address information
supplied in the gqueue element into an 18-bit physical address for NPR
devices.

The queue element size for unmapped systems is seven words. However,
the queue element size is ten words in the mapped (XM) monitor. The
.QELDF macro supplies the queue element offset symbolics and queue
element byte size for the appropriate implementation (mapped or
unmapped) , provided the symbol MMGST is correctly defined before
.QELDF is invoked.

The queue element format in the XM monitor is essentially an extension
of the unmapped format. The queue element in the XM monitor requires
three additional words. One additional word is required to pass the
user buffer address to the handler. The other two words are unused
and provided for future expansion without another change in I/O gqueue

element size. The gqueue element has the following format in the XM
monitor:

I/0 PROGRAMMING CONVENTIONS

BYTE
SYMBOLIC OFFSET CONTENTS
Q.LINK 0 Link to next element
Q.CSwW 2 Pointer to channel status word
Q.BLKN 4 Block number
Q.FUNC 6 Special function byte
Q.JNUM 7 Job number
Q.UNIT 7 Unit number
Q.BUFF 10 Displacement to user buffer
Q.WCNT 12 Word count
Q.COMP 14 Completion routine address
Q.PAR 16 Page address register 1 bias to map user

buffer (XM only)

The monitor routines that support extended memory are called through
pointers in the handler. These pointers are reserved and labelled by
the .DREND macro. The monitor fills the pointers with correct
absolute addresses at fetch time.

The following are the call sequences and register conditions for
invoking the extended memory handler support routines in the XM
monitor:

1. Convert Mapped Address to Physical Address

The monitor routine $MPPHY (Convert Mapped Address to
Physical Address) is available to NPR device handlers. It
converts the virtual buffer address supplied in the queue
element into an 18-bit physical address that is returned on

the stack.
Call: JSR PC,@$MPPTR
Inputs: RS Contains pointer to Q.BUFF in queue
element.
Outputs: 2(SP) Second word on stack contains high

order two bits of physical address
in bit positions 4 and 5.

(SP) First word on stack contains low
order 16 bits of physical address.

RS Contains pointer to Q.WCNT in gqueue
element.

2. Move Byte to User Buffer

The routine $PUTBYT in the resident monitor is available to
programmed transfer device handlers to transfer a byte passed
on the stack to the wuser buffer. The buffer address in
Q.BUFF in the queue element is updated and mapping register
overflow is detected and adjusted. The byte count is not
modified.

1-18

I1/0 PROGRAMMING CONVENTIONS

Call: JSR PC,@$SPTBYT
Inputs: (SP) First word on stack contains byte of
data to be transferred.
R4 Contains pointer to Q.BLKN in queue
element.

Outputs: Byte is removed from stack.
Buffer pointer is updated.
R4 is unmodified.

3. Move Byte From User Buffer

The routine SGETBYT is the complement of $PUTBYT. A byte is
extracted from the user buffer and returned on the stack.
The buffer pointer is updated, but the Dbyte count 1is not
modified.

Call: JSR PC,@$GTBYT

Inputs: R4 Contains pointer to Q.BLKN in
current gueue element.

Outputs: (SP) First word on stack contains byte of
data from user buffer.

Buffer address (Q.BUFF) is updated.
R4 is unmodified.

4. Move a Word to User Buffer

The $PUTWRD routine is available through the $PTWRD pointer
and moves a word supplied on the stack to the user buffer.
Its anticipated uses are in handlers for analog devices and
to return status information.

Call: JSR PC,@S$SPTWRD

Inputs: (SP) First word on stack contains word of
data to move.

R4 Contains pointer to Q.BLKN in queue
element.

Outputs: Word of data is removed from stack.
Q.BUFF is updated.
R4 is unmodified.

5. The .DREND macro generates a fifth pointer, S$RLPTR, which
points to the monitor routine S$RELOC. This routine is
reserved for use by DIGITAL software only.

1.4.4.6 Device Time-out Support - A SYSGEN option adds device
time-out support to the monitor. This option permits device handlers
to do the equivalent of a mark time without doing a .SYNCH request.
Data transfers can be timed, and the driver can take action if the
transfers do not complete in the expected time interval.

This feature 1s not used by any of the RT-11 device handlers.

However, it is used by the multi-terminal monitor when the
multi-terminal time-out option or remote D21l lines are selected

1-19

I/0 PROGRAMMING CONVENTIONS

during SYSGEN. In these two cases, the device time-out support is
automatically included in the monitor during SYSGEN. The device
time-out option is also required for DECNET applications. The user
must specifically request it in the SYSGEN dialogue when he builds a
monitor for a DECNET application.

Two macros can be used only within a device handler. The macros,
-TIMIO and .CTIMIO, permit the scheduling and cancelling of a mark
time request. They can be issued from the entry point of the handler,
from interrupt 1level, or from a time-out completion routine. The
macros are contained in the system macro library, SYSMAC.SML.

To schedule a mark time from a handler:

.TIMIO tbk,hi,lo

where tbk is the address of a seven-word timer block containing the
following:

Word Contents

0 hi order time
2 lo order time
4 link to next queue element; 0 if none
6 owner's job number
10 owner's sequence number
12 -1 if system timer element
-3 if .TWAIT element in XM
14 address of completion routine; zeroed by the monitor when

the routine is called to indicate that the timer block is
available for reuse.

The .TIMIO request schedules a completion routine to run after the
specified number of clock ticks have occurred. The completion routine
runs in user context (kernel mapping), associated with the job
specified in the timer block. Registers RO and Rl are available for
use. When the completion routine is entered, RO contains the seguence
number of the request that timed out.

To cancel a mark time from a handler:
.CTIMIO tbk

where tbk is the address of the seven-word timer block used in the
.TIMIO request being cancelled.

If the timer request has already timed out and been placed in the
completion gqueue, the .CTIMIO fails, since a timer request cannot be
cancelled after being placed in the completion gqueue. Failure to

cancel the gueue element is indicated by the C bit set on return from
the .CTIMIO request.

1.4.5 1Installing and Removing Handlers
The installation and removal of device handlers from the system is
done from the keyboard monitor. Two keyboard monitor commands,
INSTALL and REMOVE, make the temporary installation of a handler very
easy; no patching procedures are required.
The INSTALL command has the following form:

.INSTALL dd

where dd is the two-letter device (and file) name.

1-20 September 1978

1/0 PROGRAMMING CONVENTIONS

The INSTALL command searches the system device for a file named dd4.SYS
(or ddX.SYS for XM), extracts the device status word from the handler,
and updates the S$STAT, $PNAME and S$DVREC tables in the resident
monitor. The device can now be used without rebooting the monitor.

NOTE

INSTALL is effective only on the monitor
in memory. It does not permanently
modify the monitor file on the system
device. To permanently install a
handler, the system must be patched.
This requires patching the Radix-50 name
into $PNAME and the device status word
into $STAT. Another way is to include
the INSTALL command in the startup
indirect command file (STARTx.COM) that
is executed on every boot. (Note that
star tup indirect command files are
optional.) The monitor file can also be
re-SYSGENED.

1.4.6 Converting Handlers to V03 Format

A V02 format device handler requires some conversion to operate under
a V03 or later monitor. The conversion effort ranges from a short
patch to a complete re-edit, depending on how many new features the
user desires. Special device handlers require some extra effort to
support the new error reporting capability of the special device
interface. This conversion can be implemented in the following ways.

1.4.6.1 Patching a V02 Format Handler - A version V02 driver can be
patched to operate under a V03 or later monitor, provided the monitor
generated does not support extended memory, error logging or device
I/0 time-out. Four locations in block 0 of the handler file must be
patched to contain handler information essential to the operation of
the new .FETCH mechanism.

The four locations contain the handler size, device status word, the
device block size (that is, number of 256-word blocks on the volume),
and the SYSGEN options compatible with this handler. All handlers
have pointers to S$INTEN and $FORK and optional pointers to support
routines for the SYSGEN options at the end of the handlers, which are
initialized when the handler 1is .FETCHed. Since V02 handlers have
only the S$INTEN pointer, an extra word (two bytes) must be added to
the actual handler size when patching. The other two locations
contain the data normally present in the $STAT and $DVSIZ tables (the
$SDVSIZ table is eliminated in V03 and later releases of RT-11).

Location Contents
52 Handler size in bytes (plus 2 for $FORK pointer)
54 Device size in number of 256-word blocks
56 Device status word, as contained in $STAT table.
60 SYSGEN options, must be 0

1-21

I/0 PROGRAMMING CONVENTIONS

For example, to patch the V02C MT.SYS handler to function under the
V03 monitor:

.R PATCH

FILE NAME--

*MT.SYS <RET>

*52/ 0 4300 <LF>
54/ 0 0 <LF>

56/ 0 12011 <LF>
60/ 0 0 <RET>

*E

NOTE

This patch does not work with V03 or
later monitors having error logging,
extended memory or device time-out
support.

1.4.6.2 Source Edit Conversion of Handlers - A V02 format, non-system
handler can be converted to function with the V03 or later monitors
(without .FORK, error logging or extended memory support) by applying
a minimal set of edits to the device source. The two essential
changes are the addition of the four words described in the first

method to the handler .ASECT, and the addition of a dummy .FORK
pointer to the end of the handler.

The faster method is to directly edit in the .ASECT and extra word.
The better method is to replace the handler header with the .DRBEG
macro and insert the .DREND macro at the end of the handler. No
problems will be encountered if standard RT-11 naming conventions were
used in writing the handler. Neither of these methods takes full
advantage of the new features of RT-11.

NOTE

To convert a version 2C device handler
to version 3, change the version 2C
device handler so that it sets the EOF
bit in the channel status word in the
proper sequence. (See Section 1.4.1.)
If this change 1is not made, the last
block of data may be lost during a data
transfer.

a. (Fast Method)

Step 1: Define the device handler size, block size and
status word.

1-22 September 1978

I/0 PROGRAMMING CONVENTIONS

For example:

RKDSIZ = 0
RKSTS = 20003

The driver size is usually defined at the end of the handler
using the convention:

RKHSIZ = .-RKSTRT
Step 2: Install the handler .ASECT.
For example:
.ASECT
.=52
.WORD RKHSIZ
.WORD RKDSIZ

.WORD RKSTS
.WORD 0

1-22.1 September 1978

1/0 PROGRAMMING CONVENTIONS

Add a .CSECT after the .ASECT if one is not already 1in the
existing handler code.

Step 3: Add a dummy $FKPTR to the end of the handler.

For example:

SINPTR: .WORD 0
RKHSIZ = .-RKSTRT

becomes

$INPTR: .WORD 0
SFKPTR: .WORD 0
RKHSIZ = .-RKSTRT

b. (Best Method)

Perform steps 1, 2, 3, 4 and 7 of the full conversion method.

1.4.6.3 Full Conversion of Device Handlers - To take advantage of the
new features, the handler must be modified. Inserting the .DRBEG,
.DRAST, .DRFIN and .DREND macros makes conversion to V03 format
easier, but it does not supply the functional conversion necessary to
support error logging or extended memory. Difficulty of functional
conversion varies with the complexity of the device and its handler.

To make the full conversion of a device handler, perform the
following:

1. Insert an .MCALL containing the handler macros that are to be
used in converting the handlers.

For example:

.MCALL .DRBEG, .DRAST
.MCALL .DRFIN, .DREND,.QELDF
.QELDF

2. Insert the default system build options:

For example:

.IIF NDF MMGST,MMGST=0
.IIF NDF ERLS$G,ERLS$G=0
.IIF NDF TIMSIT,TIMSIT=0

3. Define the device block size and status words using the
proper mnemonics.

For example: RKDSIZ = 0
RKSTS = 20003

4. Replace the handler header with the .DRBEG macro.

For example: RKSTRT: .WORD 200
.WORD RKINT-.
.WORD 340
RKSYS:
RKLQE: .WORD 0
RKCQE: .WORD 0

I/0 PROGRAMMING CONVENTIONS

is replaced by the macro:
.DRBEG RK,200,RKDSIZ,RKSTS

Replace the interrupt entry and abort entry points with the
.DRAST macro (optional, but recommended).

For example: replace the code:

BR RKDONE ;ABORT ENTRY POINT
RKINT: JSR R5,@$INPTR ;s INTERRUPT ENTRY POINT
.WORD “C<PR5>&340

with the macro:
.DRAST RK,5,RKDONE

Replace the 1I/0 completion code with the .DRFIN macro
(optional, but recommended).

For example:
replace the code:

MOV PC,R4

ADD RKCQE-. ,R4
MOV @#54,R5
JMP @270 (R5)

with the macro call:
.DRFIN RK

Replace the $INPTR location at the end of the handler with
the .DREND macro.

For example: replace:

S$INPTR: .WORD 0
RKHSIZ = .-RKSTRT

with:
.DREND RK

The handler can now be assembled and tested. Assembly errors
can occur if RT-11 naming conventions were not followed (for
example, if the queue pointers were not originally named
RKLQE and RKCQE, the start of the CSECT was not named RKSTRT,
and the interrupt entry point was not named RKINT). The
handler should now function correctly under the SJ and FB
monitors, provided that the monitors have not been SYSGENed
to include any other handler features like error logging and
device time-out.

Extended memory conversion can now be done, if desired.

a. NPR (Non-Processor Request) Devices
Assumptions: R5 is used to point to the queue element.
Procedure: The buffer address supplied in the queue

element in a mapped monitor is really in two parts.
Q.BUFF contains the buffer displacement in the virtual

I/0 PROGRAMMING CONVENTIONS

address space defined by Q.PAR. This must be converted
to an 18-bit physical address, which is done by a call
through $MPFTR. Two words are returned on the stack,
containing the low order 16 bits and high order two bits.

For example:

RKCS = nnnnn2 ; CONTROL AND STATUS
;s REGISTER
RKWC = nnnnn4 ;WORD COUNT REGISTER
RKBA = nnnnné ; UNIBUS ADDRESS REGISTER
MOV #103,R3 ;ASSUME A WRITE
MOV #RKBA,R4 ;R4 -> BUFFER ADDRESS REG
MOV (R5) +, (R4) ;MOVE BUFFER ADDRESS
MOV (R5)+,-(R4) ;s MOVE WORD COUNT

is replaced with the conditional code:

KRKCS = nnnnn2 ; CONTROL AND STATUS
; REGISTER
RKWC = nnnnn4 ;WORD COUNT REGISTER
RKBA = nnnnn6 ;UNIBUS ADDRESS REGISTER
.IF EQ MMGST
.IFTF
MOV #103,R3 ;ASSUME A WRITE
MOV #RKBA ,R4 ;R4 -> BUFFER ADDRESS REG
.IFT ; IF UNMAPPED
MOV (R5) +,0@R4 ;s MOVE BUFFER ADDRESS
; TO RKBA
.IFF ; IF MAPPED
JSR PC,@$MPPTR ; CONVERT TO 18 BITS
MOV (SP)+,0@R4 ;MOVE LOW 16 BITS TO RKBA
.IFTF ; IN ANY CASE,
MOV (R5) +,-(R4) ;MOVE WORD COUNT TO RKWC
.IFF ; IF MAPPED
B1S (SP)+,R3 ;SET IN HI ORDER
;ADDRESS BITS
.IFTF ; IN ANY CASE
6S$: MOV R3,-(R4) ;START THE OPERATION
RTS PC ;AWAIT INTERRUPT
.ENDC

For NPR devices which may be interfaced to a mass bus
controller, the address extension bits must be placed in
bits 8 and 9 of the control and status register rather
than bits 4 and 5. For these devices (such as RJS03/04)
the code above must be modified to shift the bits into
place.

.IFF ; IF MAPPED
JSR PC,@SMPPTR ; CONVERT TO 18 BITS
MOV (SP) +,@R4 ;MOVE LOW 16 BITS
ASL (SP) ;SHIFT HI BITS INTO PLACE
ASL (SP) :
ASL (SP) ;
ASL (SP) ;
BIS (SP)+,R3 ;SET IN HI ORDER BITS

1-25

I/0 PROGRAMMING CONVENTIONS

Programmed Transfer Devices
Assumptions: R4 points to Q.BLKN in the gueue element.

Procedure: Programmed transfer devices must directly
move the data to or from the user buffer. This is
usually done a byte or word per interrupt, but sometimes
a complete buffer is moved, as in the ZR handler.

To move data the handler must save the contents of the
kernel mapping register* (page address register 1), move
Q.PAR to kernel page address register 1, and then move
one byte or word indirectly off the contents of Q.BUFF.
If more than 4K-32 words of data can be moved, the Q.BUFF
address must be checked for overflow each time it is
updated, since a page address register can map only 4K
words of memory. A simple approach is to use one of the
monitor routines provided.

For example, the original handler contains the code:

BYTCNT = 6 ;OFFSET TO BYTE COUNT

BUFF = 4 ;OFFSET TO BUFFER ADDRESS

MOV PPCQE ,R4 ;R4 -> Q.BLKN

MOVB BUFF (R4) ,@#PPB sMOVE A CHARACTER

INC BUFF (R4) ;UPDATE BUFFER ADDRESS
INC BYTCNT (R4) ;BUMP BYTE COUNT

BEQ PPDONE ;IF EQ DONE

which becomes the conditionalized code:

BYTCNT = 6 ;OFFSET TO BYTE COUNT
BUFF = 4 ;OFFSET TO BUFFER ADDRESS
MOV PPCQE, R4 ;R4 -> Q.BLKN
.IF EQ MMGST ; IF UNMAPPED
MOVB BUFF (R4) ,@4#PPB ;MOVE CHARACTER
INC BUFF (R4) ; UPDATE BUFFER ADDRESS
.IFF ; IF MAPPED
JSR PC,@$GTBYT ;GET A CHARACTER
MOVB (SP)+,@#PPB ;PUT IT OUT.
.IFTF ;IN EITHER CASE,
INC BYTCNT (R4) ;BUMP BYTE COUNT
BEQ PPDONE ; IF EQ DONE

.ENDC

There are cases where the monitor subroutines cannot be
used. In those cases, the remapping of the kernel
mapping register (page address register 1) must be done
within the handler code.

*

For an explanation of mapping registers, refer to Chapter 3.

1-26

1/0 PROGRAMMING CONVENTIONS

The call to SGTBYT is equivalent to the following in-line
code sequence:

KISAR1 = 172342 ; KERNEL PAR1

MOV @#KISAR1l,- (SP) ; SAVE PARI1

MOV Q.PAR-Q.BLKN (R4) ,@#KISAR1l ;MAP TO USER BUFFER
MOVB @Q.BUFF-Q.BLKN (R4) ,@#PPB ;MOVE NEXT BYTE

MOV (SP)+,@#KISARIL ; RESTORE PAR1

INC Q.BUFF-Q.BLKN (R4) ;UPDATE BUFFER ADDRESS
BIT $40000,Q.BUFF-Q.BLKN (R4) ;OVERFLOWS 4K LIMIT?
BEQ 1$;IF EQ, NO

SUB #20000,Q.BUFF-Q.BLKN (R4) ;sADJUST DISPLACEMENT
ADD #200,Q.PAR-Q.BLKN (R4) ;AND PAR1 BIAS

1$:

1.4.7 Device Handler Program Skeleton Outline

The following code illustrates a device handler outline. In the
example the designation SK is used as the device name.

.TITLE SK V03.01

SK DEVICE HANILER

+IDENT /V03.01/

+SBTTL PREAMEBLE SECTION

+MCALL +QELDFs .DREBEG» .IRAST» DRFINs DREND»s .FORK
3 SYSGEN DEFAULT DEFINITIONS:

+IIF NDF MMGS$T, MMGST = O

+IIF NDF ERL$G» ERL$G = O

+IIF NDF TIMSIT, TIMSIT = O

3 DEVICE UNIBUS ADDRESSES:?

+IIF NDF SK$VEC, SKSVEC = 200 #SK VECTOR

+IIF NDF SK$CSKRs SK$CSR = 177514 $SK CONTROL STATUS REGISTER
SKER = SK$CSR+2 $SK EUFFER REGISTER
HDERR =1 #HARD ERROR ON CHANNEL

3 DEVICE STATUS INFORMATION:

SKDSIZ = 0 + DEVICE BLOCK SIZE

SKSTS = 20003 DEVICE STATUS WORD

3 DEFINITION OF Q ELEMENT SYMBOLICS?

+QELDF

WCNT = R.WCNT - Q.BLKN

BUFF = Q.BUFF - Q.BLKN

+SBTTL SET OFTIONS
+ASECT
« = 400
NOF
+RANSO /RANDOM/
+WORD <0 +.RNIIM-400>/24100000

+WORD 0 sEND OF LIST

1-27

O RNDM$

+SEBTTL

-

RET?

+SETTL

MOV
MOVE

MOV

RTS

I/0 PROGRAMMING CONVENTIONS

(FC)+sR3
SFyRO
R3ySKOFT
FC

HEADER SECTION

#GET NEW INSTRUCTION TO STORE
#CHANGE INST FOR SET OFTION
#STORE IT IN HANDLER EODY
DONE WITH SET OFTION CHANGE

+DRBEG SKySK$VEC,»SKDSIZ,SKSTS

MOV
ASL
EkCC
REQ
RIS
RTS

ENTRY FOINT FORM QUEUE MANAGER

SKCQREsR4
WCNT(R4)
SKERR
SKDONE

#100,@#SK$CSK

PC

#R4 - CURRENT QUEUE ELEMENT
#MAKE WORD COUNT A RYTE COUNT
#A READ REQUEST IS ILLEGAL

#A SEEK COMFLETES IMMEDIATELY
JENARLE INTERRUFTS

JEXIT AND WAIT FOR ONE

INTERRUFT TRAF FROCESSING

+DRAST SKy4,SKOONE

 INTERRUFT SERVICE:

+IF EQ MMGST

JIFTF

MOV
TST
EBMI
TSTE
BFL
CLR

SKCQRE,»R4
@#SK$CSR
RET
@#SK$CSR
RET
@#SK$CSK

FROCESS REMAINING COLE

SKNEXT ¢

JIFT

+IFF

+IFTF

SKOFT?

+ENDC

+FORK
TSTB
BFL
TST
BEQ

MOVE
INC

JSR
MOV

INC
MOV
NOF
MOVE
BR

SKFELK
@#SK$CSK
RET

WCNT (R4)
SKDONE

@RUFF (R4) yRS

BUFF (R4)

FCy@$GTBYT

(SF)+sRS

WCNT (R4)

#1777709RS

RS »@#SKERR
SKNEXT

4 —} CURRENT QUEUE ELEMENT

S DEVICE READY?
0 IF FLy EXIT AND WAIT

R

ER

YES IF MI» HANG UNTIL CORRECT
I

N

YES» DISAERLE INTERRUFTS

. W W W W e
. W wr W wr e
. € W W wr W

AT FORK LEVEL

sREQUEST FORK PROCESS

#READY FOR ANOTHR CHARACTER?
sBR IF NOT READY

JANY LEFT TO PRINT?

#NO IF EQ» XFER IS DONE

#GET A CHARACTER
s BUMP BUFFER FOINTER

*GET A CHARACTER
INTO RS

s BUMF CHARACTER COUNT

7 BIT ASCII

sRANDOM OFTION BY SET COMMAND
sFUT IT OUT TO DEVICE

#» TRY FOR ANOTHER

I/0 PROGRAMMING CONVENTIONS

«SBTTL I/0 COMFLETION SECTION

SKERR: RIS $HDERR»@Q.CSW-Q . BLKN(R4)
$SET ERROR BIT IN CHANNEL
SKIONE: BIC #100y@#SK$CSK sDISARLE INTERRUFTS
+DRFIN SK #GO TO I/0 COMFLETION
SKFBLK? .WORD 050+050 # FORK QUEUE ELEMENT
+DRENDII SK
+END

1.4.8 Programming for Specific Devices

This section discusses specific devices that have operating and/or
programming techniques and features unique or different from most
peripheral devices. Included in this category are the following:

1. Magtape - TMl1l-Type Controllers (TMAll/TS03,TM11/TUl0,TMB11)
TJUl16-Type Controllers (TJUl6/TM02/TU16,TJE16/TM03/
TE16,TU45).

2. Cassette - TAll
3. Diskette - RX11/RXV11l RX01l; RX211/RXV21 RX02
4. Disk - RK61l1l RKO6,RK07; RL11/RLV11 RLO1l

In addition to these devices, mention 1is also made of some other
devices and other device characteristics.

1.4.8.1 Magnetic Tape Handlers (MM,MT) - The magtape device has a
file structure that 1is different from other RT-11 devices. The
magtape device handler is capable of supporting a file structure
compatible with ANSI magnetic tape labels and tape format. This
allows the user full access to the controller without being totally
familiar with the device.

NOTE

It should be noted that RT-11 magtape
file structure support is only
compatible among systems that support
DEC and ANSI standards for magtape
labels and tape format. Hence, DOS
formatted magtape cannot be read or
written.

The handler consists of two versions. One version is the hardware
handler (MMHD.SYS,MTHD.SYS), which 1is designed to accept hardware
requests only. This type of handler is useful in I/0 operations where
no file structure exists. Any file-structure request to the hardware
handler results in a monitor directory I/0 error. The wuser accesses
the hardware handler with a non-file-structured .LOOKUP (see Chapter 2
for details), special function .SPFUN, .READx/.WRITx*, and .CLOSE
requests. The hardware handler contains code to accomplish basic

The term .READx/.WRITx refers to the following group of programmed
requests: .READ, .READC, .READW, .WRITE, .WRITC, WRITW.

*

1-29

I/0 PROGRAMMING CONVENTIONS

input/output functions on physical blocks, tape positioning, error

recovery and other hardware functions. The other version of the
magtape device handler combines the hardware handler with a
file-structure module to produce MM.SYS and MT.SYS. The

file-structure module provides the handler with the capability to
accept file-structure requests. It is designed so that it can be used
with any hardware handler. The magtape handler supports up to eight
drives and one controller, and operates under all RT-11 monitors. The
file-structure version is desirable in most circumstances and is the
only one that works with system utilities. The hardware handler is
for users with special requirements. Both file-structure and hardware
handlers are delivered on the system disk distribution media. The
file-structure handler is distributed supporting drives 0 and 1. More
drives can be supported as a SYSGEN option. The file-structure
handler is the standard version (MT.SYS or MM.SYS) and the hardware
handler must be renamed to be used, as shown below:

.REMOVE MT !Remove from device table
.RENAME/SYS MT.SYS MTFS.SYS !Save file-structure handler

-.RENAME/SYS MTHD.SYS MT.SYS !Create new magtape handler

File-Structure Handler Functions

The file-structure handler searches through sequence numbers. The
file-structure handler performs file searches using the file sequence
number (FSN) to determine the tape's current position relative to
where the tape has to go to be at the desired file. When the handler
receives a sequence number, it compares it to the known position
according to the following algorithm:

1. when the file sequence number for the file desired is greater

than the current position, the tape simply searches in a
forward direction.

For example:

Current Position File Desired
FSN=1 FSN=2

Tape moves forward from its position at the tape mark
after file #1 to the tape mark at the start of file #2.

2. When the file sequence number for the file desired 1is less
than the current position of the tape by greater than two
and/or less than five files from the beginning of tape (BOT),
the tape 1is rewound and searching begins in the forward
direction. Otherwise, the tape is searched in the backward
direction. This procedure utilizes the optimum seek time for
file searching on magtape.

For example:

Current Position File Desired
Casel: FSN=2 FSN=1

The tape drive leaves its position at the tape mark for
file #2, and rewinds to the beginning of tape; it then
moves forward to the tape mark at the start of file #1.
Case2: FSN=9 FSN=7

The tape drive rewinds to the beginning of tape and
searches the tape in the forward direction.

1-30

I/0 PROGRAMMING CONVENTIONS

3. When the file sequence number for the file desired 1is the
same as the current position or one file away from the

current position, the tape 1is searched 1in the backward
direction.

For example:

Current Position File Desired
Case 1: FSN=6 FSN=6

The tape drive leaves its position at the tape mark at
the end of file #6, and backspaces to the tape mark
following file #5.

Case 2: FSN=5 FSN=4

The tape drive leaves its position at the tape mark at
the end of file #5, and backspaces to the tape mark
following file #3.

If the user .UNLOADs or .RELEASEs the handler, the file position is
lost for the file-structure handler. Hence, in this situation the
tape moves in a backward direction until it locates the beginning of
tape or a label from which the tape's position can be determined.

The file-structure handler searches through file names. The routine
to match file names uses an algorithm that enables recognition of file
names and file types written by other DIGITAL systems. The method for
doing this applies 1in the algorithm discussed below to the file
identifier field, which translates the contents to a recognizable file
name. This file name is matched to a file name translated into a
Radix-50 format.

The format is:

filnam.typ
where
filnam is a legal RT-11 file name left justified 1into a six
character field and padded with spaces, if necessary.
typ §§ idfile type left justified into a three-character
ield.

The algorithm used is compatible with the DIGITAL standard. It allows
tapes written under RT-11 V02C and earlier versions to be read by V03
and later versions and matched (these tapes don't have a dot to
separate the file name from the file type). RT-11 format tapes are

detected by the presence of "RT1l" in character positions 64-67 of the
HDR1 label.

The algorithm is as follows:
1. Clear the character count (CC).

2. Look at the first character in the file name; if it is a dot
then do the following:

a. Mark a dot found.

b. When CC < 6 then insert spaces and increment the CC until
CC = 6.

c. When CC > 6 then delete characters and decrement the CC
until CC = 6.

1-31

I/0 PROGRAMMING CONVENTIONS

When CC = 6 and if "RT11" is found in character positions
64-67 of the system code field, then insert a dot in the
translated name, mark the dot found, and increment CC.

Move the character into the translated file name and point to
the next character.

Increment the CC.
When CC < 9 go back to step 2.

Check the dot-found indicator. If a dot was not found, back
up four characters and insert ".DAT" for the file type.

Now perform a character by character comparison between the
file name being looked for and the file name that was just
translated from the file identifier field in the HDR1l label.
When they match exactly, then the file name is found.

-ENTER Request - The .ENTER requests an HDRl1 label (file
header 1label) and tape mark to be written on tape and leaves
the tape positioned after the tape mark. The .ENTER request
initializes some internal tables including entries for the
last block written and current block number. The last block
or file on tape is always the most recent one written. The
information for the internal tables and entries for the 1last
written block is correct unless a .SPFUN request is performed
on that channel. Normally, files opened with an .ENTER do
not have .SPFUN requests performed on them. An exception to
this rule is the case where a non-standard block size is to
be written (a block size that is not 512 bytes long). To
write a non-standard block, the file must be opened with an
.ENTER request; then an .SPFUN write request must be
performed. The file must be closed with a .CLOSE request
after the operation is complete. If a file search is to be
performed, the file is opened with a .LOOKUP request. The
.ENTER request has the following form:

.ENTER area,chan,dblk,,segqnum

Table 1-1
Sequence Number Values for .ENTER Requests

Segnum File name Action Taken Position
argument
>0 not null |Position at file | Found: tape is
sequence number and do | ready to write
a .ENTER Not Found: tape

is at logical end
of tape (LEOT).
LEOT is an
end-of-file 1
label followed by
two tape marks.
LEOT is different
from the physical
end of tape.

(continued on next page)

I/0 PROGRAMMING CONVENTIONS

Table 1-1 (Cont.)
Sequence Number Values for .ENTER Requests

Segnum File name Action Taken Position

argument

0 not null |Rewind tape and search | Found: tape is
tape for file name. | positioned before
If found then give | file
error. If not found |Not Found: tape
then enter the file |is positioned

ready to write

-1 not null |position tape at | tape is
logical end of tape | positioned ready
and enter file

-2 not null [Rewind tape and serach | tape is
tape for file name. | positioned ready
Enter file at found | to write
file or logical end of
tape, whichever comes
first.

0 ; null do a non-file- | tape 1is rewound

| structured .LOOKUP
—L

The .ENTER request returns the following errors.

Byte 52 Code Explanation
0 Channel in use
1 Device full. 1Issued if physical end of tape
(EOT) detected while writing HDR1l. Tape is
positioned after first tape mark following

the last end-of-file 1 label on the tape.

2 Device already in use. Issued if magtape
already has a file open.

3 File exists, cannot be deleted.

4 File sequence number not found. Tape 1is

positioned the same as for device full.

5 Illegal argument error.

A seqnum argument in

the range of -3 through -32,767 was detected.
A null file name was passed to enter.

The .ENTER request issues a directory hard
occur while entering the file.

error if errors

.LOOKUP Requests - The .LOOKUP request causes a specific HDRI1

label

to be searched and read.
is left positioned before the first data block of
The .LOOKUP request has the following forms:

.LOOKUP area,chan,dblk,segnum

1-33

After this request, the tape

the file.

I/0 PROGRAMMING CONVENTIONS

Table 1-2
Sequence Number Values for .LOOKUP Reguests
Segnum File name Action Taken Position
argument
-1 null do a non-file- Tape is not moved.
structured .LOOKUP
>0 null do a file-structured If operation
.LOOKUP on the file succeeds, tape is
sequence number ready to read 1lst
data block.
If the file
sequence number is
not found, tape is
at logical end of
tape.

0 not null |rewind to the If found, tape is
beginning of tape, ready to read lst
then use file name data block. If
to do a file- file name not
structured .LOOKUP found, tape is at

logical end of
tape.
-1 not null |don't rewind; just If found, tape is
do a file-structured ready to read 1lst
.LOOKUP for a file data block. If
name not found, tape is
at logical end of
tape.
>0 not null |position at file If found, tape is
sequence number and ready to read 1lst
do a file-structured data block. If
. LOOKUP. If file not found, tape
name does not match is at logical end
file name given, of tape.
give error.
NOTE
If a channel is opened with a
non-file-structured .LOOKUP (file name
null and file sequence number=0 or -1),
-READXx requests use an implied word
count equal to the physical block size

on

word count to determine the
tape.

on

size

the tape and .WRITx requests use the

the
and

read

block

size

This convention is used
instead of using 512 as a default block

identical
or write

(blk=0).

doing blocking/deblocking.
This request is almost
.SPFUN
report any errors

to a
which does not

Also note

that the error and status block must not
be overlaid by the USR.

1-34

I/0 PROGRAMMING CONVENTIONS

The .LOOKUP request returns the following errors.

Byte 52 Code Explanation
0 Channel in use
1 File not found. Tape is positioned after the

first tape mark following the last end of
file on the tape.

2 Device in use. 1Issued if the magtape has a
file already open.

5 Illegal argument error. A segnum argument in
the range of -2 through -32,767 was detected.
A .LOOKUP to the hardware handler must have a
positive seqgnum.

This request issues the directory hard error 1in the same
manner as the .ENTER request discussed previously.

NOTE

The term .READx/.WRITx refers to the following group
of programmed requests: .READ, .READC, .READW,
WRITE, .WRITC, .WRITW.

.READx Requests - The .READx request reads data from magtape
in blocks of 512 bytes each. This group of requests is
described here for files opened with the .ENTER and
file-structured .LOOKUP requests. In addition to this
description, there are .READx and .WRITx descriptions
appropriate to non-file structured .LOOKUP's (see Section 8
under Hardware Handler Functions). If a request 1is issued
that is less than 512 bytes, then the correct number of bytes
is read. 1f a request is greater than 512 bytes, the handler
performs the request with multiple 512 byte requests (or less
for the last request if the number of bytes does not equal an
exact multiple of 512). The .READx is valid in a file opened
with a .LOOKUP request. It is also valid in a file opened
with a .ENTER request provided the block number requested
does not exceed the last block written (0 code returned). 1If
a tape mark is read, the routine repositions the tape so that
another request causes the tape mark to be read again. When
a .CLOSE request 1is 1issued to a file opened by a .ENTER
request, the tape is not positioned after the last block
written. This could cause loss of information if the user
issued a read for a block that was written before the last
block and fails to reread the last block, thereby positioning
the tape at the end of the data.

The rules for block numbers are as follows:

a. .READx - When a .LOOKUP is used (to search file) with
this request, the tape drive tries to position the tape
at the indicated block number. When it cannot, a 0 (end
of file code) error is issued, and the tape is positioned
after the last block on the file.

I/0O PROGRAMMING CONVENTIONS

b. .WRITx and READx - On an entered file, a check is made to
determine if the block requested is past the last block
in the file. 1If it is, the tape is not moved and the 0
error code is issued.
This request has the form:
.READx area,chan,buf,wcnt,blk[,crtn)

The .READx request returns the following errors.

Byte 52 Code Explanation
0 Attempt to read past a tape mark. Also
generated by a block that is too large.
1 Hard error occurred on channel.
2 Channel not open.

-WRITx Requests - The .WRITx request writes data to magtape
in blocks of 512 bytes. If a request is issued that is less
than 512 bytes, the tape drive forces the writing of 512
bytes from the given buffer address. If a request is issued
that is greater than 512 bytes, then the handler performs
multiple 512 bytes per block requests.

The .WRITx request is only valid in a file opened with a
-ENTER or a non-file-structured .LOOKUP. The .WRITx request
has the following form:

.WRITx area,chan,buf,wcnt,blk|,crtn]

The .WRITx request returns the following errors.

Byte 52 Code Explanation

0 End of tape (means that the data was not
written but the previous block is valid and
the file can be .CLOSEd). Also issued if the
block number is too large.

1 Hard error occurred on channel
2 Channel not open

It should be noted that no operation other than a write
operation can be performed beyond the last block written on
tape (see Figure 1-3). Note that the head is positioned in a
gap between operations.

a. In example 1, blocks A, B and C are written on the tape.
Now the head 1is positioned in the gap immediately
following block C. Any forward operation of the tape
drive except write commands (that is, write, erase gap
and write, or write tape mask) yields undefined results
due to hardware restrictions.

b. In example 2, the head is shown positioned at beginning
of tape after a rewind operation. Now successive read
operations can read blocks A, B and C. The head is 1left
positioned as shown in example 3. Note that this is the
same condition as shown in example 1, and all
restrictions indicated in case 1 above are applicable.

1-36

I/0 PROGRAMMING CONVENTIONS

c. In example 4, a rewind operation was performed followed
by a write. New data (block D) replaced the old data
(block A) data and now the head is positioned in the gap
immediately following block D. Since block D is now the
last block written on tape (in the current time frame),
blocks B and C cannot be read and this data cannot be
recovered. As in previous examples, the magtape handler
can only accept write requests at this point.
5. .DELETE and .RENAME Requests - The .DELETE and . RENAME
requests are illegal operations on magtape, and any attempt
to execute them results in an 1illegal operation code (2)
being returned in byte 52.
27
EXAMPLE 1 // i GAP /
(WRITE)
//A 7
Jay HEAD
]
L-———-NO FORWARD
REQUESTS FROM
THIS POINT
8OT / (EXCEPT WRITE)
EXAMPLE 2 GAP //// GAP GAP A/%/¢
(REWIND/READ) |
| L // Aé Z
L --HEAD
L--ANY REQUEST FROM
THIS POINT
V7 7%
EXAMPLE 3 BOT EZZV
(HEAD POSITION GAP GAP GAP
AFTER READ) | ////
L %, %
4} HEAD
L ——— SAME AS
EXAMPLE 1
BOT ZZV //7 ;>/
EXAMPLE 4 | GAP GAP GAP
(REWIND/WRITE) | / / %
L 7
? HEAD
L-— NO FORWARD REQUESTS
FROM THIS POINT
(EXCEPT WRITE)
Figure 1-3 Examples of Operations Performed After the Last

6.

Block Written on Tape

.CLOSE Requests - The .CLOSE request operates in the
following three ways:
a. When a file is opened with a .ENTER request, the file is

closed by writing a tape mark, an end-of-file 1 label and
then three more tape marks. In this operation, the tape
drive is left positioned just before the second tape mark
at logical end of tape.

I/0 PROGRAMMING CONVENTIONS

b. When a file is opened with a file-structured .LOOKUP, the
tape 1is positioned after the tape mark following the
end-of-file 1 label for that file.

c. When a file is opened with a non-file-structured .LOOKUP,
no action is taken and the channel becomes free.

The .CLOSE request has the following form:
.CLOSE chan

This request issues a directory hard error if a malfunction

is detected. The error can be recovered with the .SERR
request.

Asynchronous Directory Operations Request - The asynchronous
directory operation request performs directory operations
without the USR. This request can be used for long tape
searches without tying up the USR. It is provided for users
of multi-user systems who do not want to wait for the 1long
tape searches that can occur during .ENTER and .LOOKUP
requests. It is also useful and desirable for FB users who
do not want to lock the USR. This request allows the .ENTER
and .LOOKUP requests to be issued after a non-file-structured
.LOOKUP has been issued to assign a channel to the magtape
handler. 1Indeterminate results occur if this request is
issued for a channel that was not opened with a
non-file-structured .LOOKUP. The .SPFUN request has the
following form:

.SPFUN area,chan,-20.,buf,,blk

where:
-20. (decimal) is the code for the synchronous
directory request.
buf is the address of a seven-word block in the
following format:
Word Meaning
0 through 2 Radix-50 representation of the file
name.
3 Code which is one of the following:
LOOKUP=3
ENTER=4
4 Sequence number value. See the
corresponding sections for .LOOKUP or
.ENTER for complete information on the
interpretation of this value.
5,6 Reserved

The blk argument is the address of a four-word error and
status block wused for returning .LOOKUP and .ENTER errors
that are normally reported in byte 52. Only the first word
of blk is used by this request. The other three words are
reserved for future use and must be zero. When the first
word of blk 1is 0, no error information is returned. This

block must always be mapped when running in the extended
memory monitor.

1-38

